Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssff Structured version   Visualization version   GIF version

Theorem rnmptssff 45220
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
rnmptssff.1 𝑥𝐴
rnmptssff.2 𝑥𝐶
rnmptssff.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmptssff (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)

Proof of Theorem rnmptssff
StepHypRef Expression
1 rnmptssff.1 . . 3 𝑥𝐴
2 rnmptssff.2 . . 3 𝑥𝐶
3 rnmptssff.3 . . 3 𝐹 = (𝑥𝐴𝐵)
41, 2, 3fmptff 45215 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
5 frn 6744 . 2 (𝐹:𝐴𝐶 → ran 𝐹𝐶)
64, 5sylbi 217 1 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wnfc 2888  wral 3059  wss 3963  cmpt 5231  ran crn 5690  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  rnmptssdff  45221
  Copyright terms: Public domain W3C validator