Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssff Structured version   Visualization version   GIF version

Theorem rnmptssff 45226
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
rnmptssff.1 𝑥𝐴
rnmptssff.2 𝑥𝐶
rnmptssff.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmptssff (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)

Proof of Theorem rnmptssff
StepHypRef Expression
1 rnmptssff.1 . . 3 𝑥𝐴
2 rnmptssff.2 . . 3 𝑥𝐶
3 rnmptssff.3 . . 3 𝐹 = (𝑥𝐴𝐵)
41, 2, 3fmptff 45221 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
5 frn 6724 . 2 (𝐹:𝐴𝐶 → ran 𝐹𝐶)
64, 5sylbi 217 1 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wnfc 2882  wral 3050  wss 3933  cmpt 5207  ran crn 5668  wf 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-fun 6544  df-fn 6545  df-f 6546
This theorem is referenced by:  rnmptssdff  45227
  Copyright terms: Public domain W3C validator