Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssff Structured version   Visualization version   GIF version

Theorem rnmptssff 43969
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
rnmptssff.1 𝑥𝐴
rnmptssff.2 𝑥𝐶
rnmptssff.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmptssff (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)

Proof of Theorem rnmptssff
StepHypRef Expression
1 rnmptssff.1 . . 3 𝑥𝐴
2 rnmptssff.2 . . 3 𝑥𝐶
3 rnmptssff.3 . . 3 𝐹 = (𝑥𝐴𝐵)
41, 2, 3fmptff 43964 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
5 frn 6724 . 2 (𝐹:𝐴𝐶 → ran 𝐹𝐶)
64, 5sylbi 216 1 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wnfc 2883  wral 3061  wss 3948  cmpt 5231  ran crn 5677  wf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547
This theorem is referenced by:  rnmptssdff  43970
  Copyright terms: Public domain W3C validator