![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhval | Structured version Visualization version GIF version |
Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
Ref | Expression |
---|---|
rrhval.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
rrhval.2 | ⊢ 𝐾 = (TopOpen‘𝑅) |
Ref | Expression |
---|---|
rrhval | ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3482 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | rrhval.1 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | 2 | eqcomi 2735 | . . . . . 6 ⊢ (topGen‘ran (,)) = 𝐽 |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝑟 = 𝑅 → (topGen‘ran (,)) = 𝐽) |
5 | fveq2 6901 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (TopOpen‘𝑟) = (TopOpen‘𝑅)) | |
6 | rrhval.2 | . . . . . 6 ⊢ 𝐾 = (TopOpen‘𝑅) | |
7 | 5, 6 | eqtr4di 2784 | . . . . 5 ⊢ (𝑟 = 𝑅 → (TopOpen‘𝑟) = 𝐾) |
8 | 4, 7 | oveq12d 7442 | . . . 4 ⊢ (𝑟 = 𝑅 → ((topGen‘ran (,))CnExt(TopOpen‘𝑟)) = (𝐽CnExt𝐾)) |
9 | fveq2 6901 | . . . 4 ⊢ (𝑟 = 𝑅 → (ℚHom‘𝑟) = (ℚHom‘𝑅)) | |
10 | 8, 9 | fveq12d 6908 | . . 3 ⊢ (𝑟 = 𝑅 → (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
11 | df-rrh 33810 | . . 3 ⊢ ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟))) | |
12 | fvex 6914 | . . 3 ⊢ ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ V | |
13 | 10, 11, 12 | fvmpt 7009 | . 2 ⊢ (𝑅 ∈ V → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ran crn 5683 ‘cfv 6554 (class class class)co 7424 (,)cioo 13378 TopOpenctopn 17436 topGenctg 17452 CnExtccnext 24054 ℚHomcqqh 33787 ℝHomcrrh 33808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6506 df-fun 6556 df-fv 6562 df-ov 7427 df-rrh 33810 |
This theorem is referenced by: rrhcn 33812 rrhqima 33829 rrhre 33836 |
Copyright terms: Public domain | W3C validator |