| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhval | Structured version Visualization version GIF version | ||
| Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
| Ref | Expression |
|---|---|
| rrhval.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
| rrhval.2 | ⊢ 𝐾 = (TopOpen‘𝑅) |
| Ref | Expression |
|---|---|
| rrhval | ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3459 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | rrhval.1 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | 2 | eqcomi 2738 | . . . . . 6 ⊢ (topGen‘ran (,)) = 𝐽 |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝑟 = 𝑅 → (topGen‘ran (,)) = 𝐽) |
| 5 | fveq2 6826 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (TopOpen‘𝑟) = (TopOpen‘𝑅)) | |
| 6 | rrhval.2 | . . . . . 6 ⊢ 𝐾 = (TopOpen‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2782 | . . . . 5 ⊢ (𝑟 = 𝑅 → (TopOpen‘𝑟) = 𝐾) |
| 8 | 4, 7 | oveq12d 7371 | . . . 4 ⊢ (𝑟 = 𝑅 → ((topGen‘ran (,))CnExt(TopOpen‘𝑟)) = (𝐽CnExt𝐾)) |
| 9 | fveq2 6826 | . . . 4 ⊢ (𝑟 = 𝑅 → (ℚHom‘𝑟) = (ℚHom‘𝑅)) | |
| 10 | 8, 9 | fveq12d 6833 | . . 3 ⊢ (𝑟 = 𝑅 → (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| 11 | df-rrh 33964 | . . 3 ⊢ ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟))) | |
| 12 | fvex 6839 | . . 3 ⊢ ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ V | |
| 13 | 10, 11, 12 | fvmpt 6934 | . 2 ⊢ (𝑅 ∈ V → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ran crn 5624 ‘cfv 6486 (class class class)co 7353 (,)cioo 13266 TopOpenctopn 17343 topGenctg 17359 CnExtccnext 23962 ℚHomcqqh 33939 ℝHomcrrh 33962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-rrh 33964 |
| This theorem is referenced by: rrhcn 33966 rrhqima 33983 rrhre 33990 |
| Copyright terms: Public domain | W3C validator |