Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhval Structured version   Visualization version   GIF version

Theorem rrhval 33811
Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.)
Hypotheses
Ref Expression
rrhval.1 𝐽 = (topGen‘ran (,))
rrhval.2 𝐾 = (TopOpen‘𝑅)
Assertion
Ref Expression
rrhval (𝑅𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))

Proof of Theorem rrhval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3482 . 2 (𝑅𝑉𝑅 ∈ V)
2 rrhval.1 . . . . . . 7 𝐽 = (topGen‘ran (,))
32eqcomi 2735 . . . . . 6 (topGen‘ran (,)) = 𝐽
43a1i 11 . . . . 5 (𝑟 = 𝑅 → (topGen‘ran (,)) = 𝐽)
5 fveq2 6901 . . . . . 6 (𝑟 = 𝑅 → (TopOpen‘𝑟) = (TopOpen‘𝑅))
6 rrhval.2 . . . . . 6 𝐾 = (TopOpen‘𝑅)
75, 6eqtr4di 2784 . . . . 5 (𝑟 = 𝑅 → (TopOpen‘𝑟) = 𝐾)
84, 7oveq12d 7442 . . . 4 (𝑟 = 𝑅 → ((topGen‘ran (,))CnExt(TopOpen‘𝑟)) = (𝐽CnExt𝐾))
9 fveq2 6901 . . . 4 (𝑟 = 𝑅 → (ℚHom‘𝑟) = (ℚHom‘𝑅))
108, 9fveq12d 6908 . . 3 (𝑟 = 𝑅 → (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
11 df-rrh 33810 . . 3 ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)))
12 fvex 6914 . . 3 ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ V
1310, 11, 12fvmpt 7009 . 2 (𝑅 ∈ V → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
141, 13syl 17 1 (𝑅𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3462  ran crn 5683  cfv 6554  (class class class)co 7424  (,)cioo 13378  TopOpenctopn 17436  topGenctg 17452  CnExtccnext 24054  ℚHomcqqh 33787  ℝHomcrrh 33808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6506  df-fun 6556  df-fv 6562  df-ov 7427  df-rrh 33810
This theorem is referenced by:  rrhcn  33812  rrhqima  33829  rrhre  33836
  Copyright terms: Public domain W3C validator