Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhval Structured version   Visualization version   GIF version

Theorem rrhval 33931
Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.)
Hypotheses
Ref Expression
rrhval.1 𝐽 = (topGen‘ran (,))
rrhval.2 𝐾 = (TopOpen‘𝑅)
Assertion
Ref Expression
rrhval (𝑅𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))

Proof of Theorem rrhval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3484 . 2 (𝑅𝑉𝑅 ∈ V)
2 rrhval.1 . . . . . . 7 𝐽 = (topGen‘ran (,))
32eqcomi 2743 . . . . . 6 (topGen‘ran (,)) = 𝐽
43a1i 11 . . . . 5 (𝑟 = 𝑅 → (topGen‘ran (,)) = 𝐽)
5 fveq2 6885 . . . . . 6 (𝑟 = 𝑅 → (TopOpen‘𝑟) = (TopOpen‘𝑅))
6 rrhval.2 . . . . . 6 𝐾 = (TopOpen‘𝑅)
75, 6eqtr4di 2787 . . . . 5 (𝑟 = 𝑅 → (TopOpen‘𝑟) = 𝐾)
84, 7oveq12d 7430 . . . 4 (𝑟 = 𝑅 → ((topGen‘ran (,))CnExt(TopOpen‘𝑟)) = (𝐽CnExt𝐾))
9 fveq2 6885 . . . 4 (𝑟 = 𝑅 → (ℚHom‘𝑟) = (ℚHom‘𝑅))
108, 9fveq12d 6892 . . 3 (𝑟 = 𝑅 → (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
11 df-rrh 33930 . . 3 ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)))
12 fvex 6898 . . 3 ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ V
1310, 11, 12fvmpt 6995 . 2 (𝑅 ∈ V → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
141, 13syl 17 1 (𝑅𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  ran crn 5666  cfv 6540  (class class class)co 7412  (,)cioo 13368  TopOpenctopn 17436  topGenctg 17452  CnExtccnext 24012  ℚHomcqqh 33905  ℝHomcrrh 33928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6493  df-fun 6542  df-fv 6548  df-ov 7415  df-rrh 33930
This theorem is referenced by:  rrhcn  33932  rrhqima  33949  rrhre  33956
  Copyright terms: Public domain W3C validator