Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhval Structured version   Visualization version   GIF version

Theorem rrhval 33994
Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.)
Hypotheses
Ref Expression
rrhval.1 𝐽 = (topGen‘ran (,))
rrhval.2 𝐾 = (TopOpen‘𝑅)
Assertion
Ref Expression
rrhval (𝑅𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))

Proof of Theorem rrhval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3476 . 2 (𝑅𝑉𝑅 ∈ V)
2 rrhval.1 . . . . . . 7 𝐽 = (topGen‘ran (,))
32eqcomi 2739 . . . . . 6 (topGen‘ran (,)) = 𝐽
43a1i 11 . . . . 5 (𝑟 = 𝑅 → (topGen‘ran (,)) = 𝐽)
5 fveq2 6865 . . . . . 6 (𝑟 = 𝑅 → (TopOpen‘𝑟) = (TopOpen‘𝑅))
6 rrhval.2 . . . . . 6 𝐾 = (TopOpen‘𝑅)
75, 6eqtr4di 2783 . . . . 5 (𝑟 = 𝑅 → (TopOpen‘𝑟) = 𝐾)
84, 7oveq12d 7412 . . . 4 (𝑟 = 𝑅 → ((topGen‘ran (,))CnExt(TopOpen‘𝑟)) = (𝐽CnExt𝐾))
9 fveq2 6865 . . . 4 (𝑟 = 𝑅 → (ℚHom‘𝑟) = (ℚHom‘𝑅))
108, 9fveq12d 6872 . . 3 (𝑟 = 𝑅 → (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
11 df-rrh 33993 . . 3 ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)))
12 fvex 6878 . . 3 ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ V
1310, 11, 12fvmpt 6975 . 2 (𝑅 ∈ V → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
141, 13syl 17 1 (𝑅𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3455  ran crn 5647  cfv 6519  (class class class)co 7394  (,)cioo 13319  TopOpenctopn 17390  topGenctg 17406  CnExtccnext 23952  ℚHomcqqh 33968  ℝHomcrrh 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527  df-ov 7397  df-rrh 33993
This theorem is referenced by:  rrhcn  33995  rrhqima  34012  rrhre  34019
  Copyright terms: Public domain W3C validator