Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhval | Structured version Visualization version GIF version |
Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
Ref | Expression |
---|---|
rrhval.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
rrhval.2 | ⊢ 𝐾 = (TopOpen‘𝑅) |
Ref | Expression |
---|---|
rrhval | ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3447 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | rrhval.1 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | 2 | eqcomi 2747 | . . . . . 6 ⊢ (topGen‘ran (,)) = 𝐽 |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝑟 = 𝑅 → (topGen‘ran (,)) = 𝐽) |
5 | fveq2 6766 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (TopOpen‘𝑟) = (TopOpen‘𝑅)) | |
6 | rrhval.2 | . . . . . 6 ⊢ 𝐾 = (TopOpen‘𝑅) | |
7 | 5, 6 | eqtr4di 2796 | . . . . 5 ⊢ (𝑟 = 𝑅 → (TopOpen‘𝑟) = 𝐾) |
8 | 4, 7 | oveq12d 7285 | . . . 4 ⊢ (𝑟 = 𝑅 → ((topGen‘ran (,))CnExt(TopOpen‘𝑟)) = (𝐽CnExt𝐾)) |
9 | fveq2 6766 | . . . 4 ⊢ (𝑟 = 𝑅 → (ℚHom‘𝑟) = (ℚHom‘𝑅)) | |
10 | 8, 9 | fveq12d 6773 | . . 3 ⊢ (𝑟 = 𝑅 → (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
11 | df-rrh 31953 | . . 3 ⊢ ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟))) | |
12 | fvex 6779 | . . 3 ⊢ ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ V | |
13 | 10, 11, 12 | fvmpt 6867 | . 2 ⊢ (𝑅 ∈ V → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3429 ran crn 5585 ‘cfv 6426 (class class class)co 7267 (,)cioo 13089 TopOpenctopn 17142 topGenctg 17158 CnExtccnext 23220 ℚHomcqqh 31930 ℝHomcrrh 31951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-iota 6384 df-fun 6428 df-fv 6434 df-ov 7270 df-rrh 31953 |
This theorem is referenced by: rrhcn 31955 rrhqima 31972 rrhre 31979 |
Copyright terms: Public domain | W3C validator |