![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhval | Structured version Visualization version GIF version |
Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
Ref | Expression |
---|---|
rrhval.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
rrhval.2 | ⊢ 𝐾 = (TopOpen‘𝑅) |
Ref | Expression |
---|---|
rrhval | ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3502 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | rrhval.1 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | 2 | eqcomi 2746 | . . . . . 6 ⊢ (topGen‘ran (,)) = 𝐽 |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝑟 = 𝑅 → (topGen‘ran (,)) = 𝐽) |
5 | fveq2 6914 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (TopOpen‘𝑟) = (TopOpen‘𝑅)) | |
6 | rrhval.2 | . . . . . 6 ⊢ 𝐾 = (TopOpen‘𝑅) | |
7 | 5, 6 | eqtr4di 2795 | . . . . 5 ⊢ (𝑟 = 𝑅 → (TopOpen‘𝑟) = 𝐾) |
8 | 4, 7 | oveq12d 7456 | . . . 4 ⊢ (𝑟 = 𝑅 → ((topGen‘ran (,))CnExt(TopOpen‘𝑟)) = (𝐽CnExt𝐾)) |
9 | fveq2 6914 | . . . 4 ⊢ (𝑟 = 𝑅 → (ℚHom‘𝑟) = (ℚHom‘𝑅)) | |
10 | 8, 9 | fveq12d 6921 | . . 3 ⊢ (𝑟 = 𝑅 → (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
11 | df-rrh 33990 | . . 3 ⊢ ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟))) | |
12 | fvex 6927 | . . 3 ⊢ ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ V | |
13 | 10, 11, 12 | fvmpt 7023 | . 2 ⊢ (𝑅 ∈ V → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ran crn 5694 ‘cfv 6569 (class class class)co 7438 (,)cioo 13393 TopOpenctopn 17477 topGenctg 17493 CnExtccnext 24092 ℚHomcqqh 33965 ℝHomcrrh 33988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-rrh 33990 |
This theorem is referenced by: rrhcn 33992 rrhqima 34009 rrhre 34016 |
Copyright terms: Public domain | W3C validator |