| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhval | Structured version Visualization version GIF version | ||
| Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
| Ref | Expression |
|---|---|
| rrhval.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
| rrhval.2 | ⊢ 𝐾 = (TopOpen‘𝑅) |
| Ref | Expression |
|---|---|
| rrhval | ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3484 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | rrhval.1 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | 2 | eqcomi 2743 | . . . . . 6 ⊢ (topGen‘ran (,)) = 𝐽 |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝑟 = 𝑅 → (topGen‘ran (,)) = 𝐽) |
| 5 | fveq2 6885 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (TopOpen‘𝑟) = (TopOpen‘𝑅)) | |
| 6 | rrhval.2 | . . . . . 6 ⊢ 𝐾 = (TopOpen‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2787 | . . . . 5 ⊢ (𝑟 = 𝑅 → (TopOpen‘𝑟) = 𝐾) |
| 8 | 4, 7 | oveq12d 7430 | . . . 4 ⊢ (𝑟 = 𝑅 → ((topGen‘ran (,))CnExt(TopOpen‘𝑟)) = (𝐽CnExt𝐾)) |
| 9 | fveq2 6885 | . . . 4 ⊢ (𝑟 = 𝑅 → (ℚHom‘𝑟) = (ℚHom‘𝑅)) | |
| 10 | 8, 9 | fveq12d 6892 | . . 3 ⊢ (𝑟 = 𝑅 → (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| 11 | df-rrh 33930 | . . 3 ⊢ ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟))) | |
| 12 | fvex 6898 | . . 3 ⊢ ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ V | |
| 13 | 10, 11, 12 | fvmpt 6995 | . 2 ⊢ (𝑅 ∈ V → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ran crn 5666 ‘cfv 6540 (class class class)co 7412 (,)cioo 13368 TopOpenctopn 17436 topGenctg 17452 CnExtccnext 24012 ℚHomcqqh 33905 ℝHomcrrh 33928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-rrh 33930 |
| This theorem is referenced by: rrhcn 33932 rrhqima 33949 rrhre 33956 |
| Copyright terms: Public domain | W3C validator |