Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimalelt Structured version   Visualization version   GIF version

Theorem salpreimalelt 43186
Description: If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (ii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimalelt.x 𝑥𝜑
salpreimalelt.a 𝑎𝜑
salpreimalelt.s (𝜑𝑆 ∈ SAlg)
salpreimalelt.u 𝐴 = 𝑆
salpreimalelt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimalelt.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
salpreimalelt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimalelt (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎,𝑥   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimalelt
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 salpreimalelt.x . 2 𝑥𝜑
2 salpreimalelt.a . 2 𝑎𝜑
3 salpreimalelt.s . 2 (𝜑𝑆 ∈ SAlg)
4 salpreimalelt.u . 2 𝐴 = 𝑆
5 salpreimalelt.b . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
6 nfv 1916 . . . 4 𝑥 𝑎 ∈ ℝ
71, 6nfan 1901 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
8 nfv 1916 . . 3 𝑏(𝜑𝑎 ∈ ℝ)
93adantr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
105adantlr 714 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
11 nfv 1916 . . . . . 6 𝑥 𝑏 ∈ ℝ
121, 11nfan 1901 . . . . 5 𝑥(𝜑𝑏 ∈ ℝ)
13 nfv 1916 . . . . . 6 𝑎 𝑏 ∈ ℝ
142, 13nfan 1901 . . . . 5 𝑎(𝜑𝑏 ∈ ℝ)
153adantr 484 . . . . 5 ((𝜑𝑏 ∈ ℝ) → 𝑆 ∈ SAlg)
165adantlr 714 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
17 salpreimalelt.p . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
1817adantlr 714 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
19 simpr 488 . . . . 5 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
2012, 14, 15, 4, 16, 18, 19salpreimalegt 43168 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
2120adantlr 714 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
22 simpr 488 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
237, 8, 9, 10, 21, 22salpreimagtge 43182 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎𝐵} ∈ 𝑆)
24 salpreimalelt.c . 2 (𝜑𝐶 ∈ ℝ)
251, 2, 3, 4, 5, 23, 24salpreimagelt 43166 1 (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2115  {crab 3130   cuni 4811   class class class wbr 5039  cr 10513  *cxr 10651   < clt 10652  cle 10653  SAlgcsalg 42773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-card 9344  df-acn 9347  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-q 12327  df-rp 12368  df-fl 13145  df-salg 42774
This theorem is referenced by:  issmflelem  43201
  Copyright terms: Public domain W3C validator