Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimalelt Structured version   Visualization version   GIF version

Theorem salpreimalelt 46734
Description: If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (ii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimalelt.x 𝑥𝜑
salpreimalelt.a 𝑎𝜑
salpreimalelt.s (𝜑𝑆 ∈ SAlg)
salpreimalelt.u 𝐴 = 𝑆
salpreimalelt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimalelt.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
salpreimalelt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimalelt (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎,𝑥   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimalelt
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 salpreimalelt.x . 2 𝑥𝜑
2 salpreimalelt.a . 2 𝑎𝜑
3 salpreimalelt.s . 2 (𝜑𝑆 ∈ SAlg)
4 salpreimalelt.u . 2 𝐴 = 𝑆
5 salpreimalelt.b . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
6 nfv 1914 . . . 4 𝑥 𝑎 ∈ ℝ
71, 6nfan 1899 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
8 nfv 1914 . . 3 𝑏(𝜑𝑎 ∈ ℝ)
93adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
105adantlr 715 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
11 nfv 1914 . . . . . 6 𝑥 𝑏 ∈ ℝ
121, 11nfan 1899 . . . . 5 𝑥(𝜑𝑏 ∈ ℝ)
13 nfv 1914 . . . . . 6 𝑎 𝑏 ∈ ℝ
142, 13nfan 1899 . . . . 5 𝑎(𝜑𝑏 ∈ ℝ)
153adantr 480 . . . . 5 ((𝜑𝑏 ∈ ℝ) → 𝑆 ∈ SAlg)
165adantlr 715 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
17 salpreimalelt.p . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
1817adantlr 715 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
19 simpr 484 . . . . 5 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
2012, 14, 15, 4, 16, 18, 19salpreimalegt 46714 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
2120adantlr 715 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
22 simpr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
237, 8, 9, 10, 21, 22salpreimagtge 46730 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎𝐵} ∈ 𝑆)
24 salpreimalelt.c . 2 (𝜑𝐶 ∈ ℝ)
251, 2, 3, 4, 5, 23, 24salpreimagelt 46712 1 (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  {crab 3408   cuni 4874   class class class wbr 5110  cr 11074  *cxr 11214   < clt 11215  cle 11216  SAlgcsalg 46313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fl 13761  df-salg 46314
This theorem is referenced by:  issmflelem  46749
  Copyright terms: Public domain W3C validator