Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimalelt Structured version   Visualization version   GIF version

Theorem salpreimalelt 41733
Description: If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (ii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimalelt.x 𝑥𝜑
salpreimalelt.a 𝑎𝜑
salpreimalelt.s (𝜑𝑆 ∈ SAlg)
salpreimalelt.u 𝐴 = 𝑆
salpreimalelt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimalelt.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
salpreimalelt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimalelt (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎,𝑥   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimalelt
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 salpreimalelt.x . 2 𝑥𝜑
2 salpreimalelt.a . 2 𝑎𝜑
3 salpreimalelt.s . 2 (𝜑𝑆 ∈ SAlg)
4 salpreimalelt.u . 2 𝐴 = 𝑆
5 salpreimalelt.b . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
6 nfv 2015 . . . 4 𝑥 𝑎 ∈ ℝ
71, 6nfan 2004 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
8 nfv 2015 . . 3 𝑏(𝜑𝑎 ∈ ℝ)
93adantr 474 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
105adantlr 708 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
11 nfv 2015 . . . . . 6 𝑥 𝑏 ∈ ℝ
121, 11nfan 2004 . . . . 5 𝑥(𝜑𝑏 ∈ ℝ)
13 nfv 2015 . . . . . 6 𝑎 𝑏 ∈ ℝ
142, 13nfan 2004 . . . . 5 𝑎(𝜑𝑏 ∈ ℝ)
153adantr 474 . . . . 5 ((𝜑𝑏 ∈ ℝ) → 𝑆 ∈ SAlg)
165adantlr 708 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
17 salpreimalelt.p . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
1817adantlr 708 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
19 simpr 479 . . . . 5 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
2012, 14, 15, 4, 16, 18, 19salpreimalegt 41715 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
2120adantlr 708 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
22 simpr 479 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
237, 8, 9, 10, 21, 22salpreimagtge 41729 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎𝐵} ∈ 𝑆)
24 salpreimalelt.c . 2 (𝜑𝐶 ∈ ℝ)
251, 2, 3, 4, 5, 23, 24salpreimagelt 41713 1 (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wnf 1884  wcel 2166  {crab 3122   cuni 4659   class class class wbr 4874  cr 10252  *cxr 10391   < clt 10392  cle 10393  SAlgcsalg 41320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-sup 8618  df-inf 8619  df-card 9079  df-acn 9082  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-q 12073  df-rp 12114  df-fl 12889  df-salg 41321
This theorem is referenced by:  issmflelem  41748
  Copyright terms: Public domain W3C validator