Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimalelt Structured version   Visualization version   GIF version

Theorem salpreimalelt 46826
Description: If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (ii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimalelt.x 𝑥𝜑
salpreimalelt.a 𝑎𝜑
salpreimalelt.s (𝜑𝑆 ∈ SAlg)
salpreimalelt.u 𝐴 = 𝑆
salpreimalelt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimalelt.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
salpreimalelt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimalelt (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎,𝑥   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimalelt
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 salpreimalelt.x . 2 𝑥𝜑
2 salpreimalelt.a . 2 𝑎𝜑
3 salpreimalelt.s . 2 (𝜑𝑆 ∈ SAlg)
4 salpreimalelt.u . 2 𝐴 = 𝑆
5 salpreimalelt.b . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
6 nfv 1915 . . . 4 𝑥 𝑎 ∈ ℝ
71, 6nfan 1900 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
8 nfv 1915 . . 3 𝑏(𝜑𝑎 ∈ ℝ)
93adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
105adantlr 715 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
11 nfv 1915 . . . . . 6 𝑥 𝑏 ∈ ℝ
121, 11nfan 1900 . . . . 5 𝑥(𝜑𝑏 ∈ ℝ)
13 nfv 1915 . . . . . 6 𝑎 𝑏 ∈ ℝ
142, 13nfan 1900 . . . . 5 𝑎(𝜑𝑏 ∈ ℝ)
153adantr 480 . . . . 5 ((𝜑𝑏 ∈ ℝ) → 𝑆 ∈ SAlg)
165adantlr 715 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
17 salpreimalelt.p . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
1817adantlr 715 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
19 simpr 484 . . . . 5 ((𝜑𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
2012, 14, 15, 4, 16, 18, 19salpreimalegt 46806 . . . 4 ((𝜑𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
2120adantlr 715 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑏 ∈ ℝ) → {𝑥𝐴𝑏 < 𝐵} ∈ 𝑆)
22 simpr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
237, 8, 9, 10, 21, 22salpreimagtge 46822 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝑎𝐵} ∈ 𝑆)
24 salpreimalelt.c . 2 (𝜑𝐶 ∈ ℝ)
251, 2, 3, 4, 5, 23, 24salpreimagelt 46804 1 (𝜑 → {𝑥𝐴𝐵 < 𝐶} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  {crab 3395   cuni 4856   class class class wbr 5089  cr 11005  *cxr 11145   < clt 11146  cle 11147  SAlgcsalg 46405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fl 13696  df-salg 46406
This theorem is referenced by:  issmflelem  46841
  Copyright terms: Public domain W3C validator