Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimalelt | Structured version Visualization version GIF version |
Description: If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (ii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimalelt.x | ⊢ Ⅎ𝑥𝜑 |
salpreimalelt.a | ⊢ Ⅎ𝑎𝜑 |
salpreimalelt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimalelt.u | ⊢ 𝐴 = ∪ 𝑆 |
salpreimalelt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimalelt.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) |
salpreimalelt.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimalelt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimalelt.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | salpreimalelt.a | . 2 ⊢ Ⅎ𝑎𝜑 | |
3 | salpreimalelt.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | salpreimalelt.u | . 2 ⊢ 𝐴 = ∪ 𝑆 | |
5 | salpreimalelt.b | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
6 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
7 | 1, 6 | nfan 1901 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
8 | nfv 1916 | . . 3 ⊢ Ⅎ𝑏(𝜑 ∧ 𝑎 ∈ ℝ) | |
9 | 3 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
10 | 5 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
11 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑥 𝑏 ∈ ℝ | |
12 | 1, 11 | nfan 1901 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑏 ∈ ℝ) |
13 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑎 𝑏 ∈ ℝ | |
14 | 2, 13 | nfan 1901 | . . . . 5 ⊢ Ⅎ𝑎(𝜑 ∧ 𝑏 ∈ ℝ) |
15 | 3 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → 𝑆 ∈ SAlg) |
16 | 5 | adantlr 712 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
17 | salpreimalelt.p | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) | |
18 | 17 | adantlr 712 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) |
19 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ) | |
20 | 12, 14, 15, 4, 16, 18, 19 | salpreimalegt 44636 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
21 | 20 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑏 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑏 < 𝐵} ∈ 𝑆) |
22 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
23 | 7, 8, 9, 10, 21, 22 | salpreimagtge 44652 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆) |
24 | salpreimalelt.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
25 | 1, 2, 3, 4, 5, 23, 24 | salpreimagelt 44634 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 {crab 3403 ∪ cuni 4853 class class class wbr 5093 ℝcr 10972 ℝ*cxr 11110 < clt 11111 ≤ cle 11112 SAlgcsalg 44237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-inf2 9499 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-pre-sup 11051 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-map 8689 df-en 8806 df-dom 8807 df-sdom 8808 df-sup 9300 df-inf 9301 df-card 9797 df-acn 9800 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-n0 12336 df-z 12422 df-uz 12685 df-q 12791 df-rp 12833 df-fl 13614 df-salg 44238 |
This theorem is referenced by: issmflelem 44671 |
Copyright terms: Public domain | W3C validator |