Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setsval | Structured version Visualization version GIF version |
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
setsval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5379 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | setsvalg 16867 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 〈𝐴, 𝐵〉 ∈ V) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) | |
3 | 1, 2 | mpan2 688 | . 2 ⊢ (𝑆 ∈ 𝑉 → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) |
4 | dmsnopg 6116 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
5 | 4 | difeq2d 4057 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (V ∖ dom {〈𝐴, 𝐵〉}) = (V ∖ {𝐴})) |
6 | 5 | reseq2d 5891 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) = (𝑆 ↾ (V ∖ {𝐴}))) |
7 | 6 | uneq1d 4096 | . 2 ⊢ (𝐵 ∈ 𝑊 → ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
8 | 3, 7 | sylan9eq 2798 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 {csn 4561 〈cop 4567 dom cdm 5589 ↾ cres 5591 (class class class)co 7275 sSet csts 16864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-sets 16865 |
This theorem is referenced by: fvsetsid 16869 fsets 16870 setsabs 16880 setscom 16881 setsidvald 16900 setsidvaldOLD 16901 setsid 16909 estrres 17856 symgvalstruct 19004 symgvalstructOLD 19005 setsstrset 35307 setsidel 44828 setsnidel 44829 setsv 44830 |
Copyright terms: Public domain | W3C validator |