| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsval | Structured version Visualization version GIF version | ||
| Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| setsval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5407 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 2 | setsvalg 17079 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 〈𝐴, 𝐵〉 ∈ V) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝑆 ∈ 𝑉 → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) |
| 4 | dmsnopg 6165 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 5 | 4 | difeq2d 4075 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (V ∖ dom {〈𝐴, 𝐵〉}) = (V ∖ {𝐴})) |
| 6 | 5 | reseq2d 5932 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) = (𝑆 ↾ (V ∖ {𝐴}))) |
| 7 | 6 | uneq1d 4116 | . 2 ⊢ (𝐵 ∈ 𝑊 → ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 8 | 3, 7 | sylan9eq 2788 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 {csn 4575 〈cop 4581 dom cdm 5619 ↾ cres 5621 (class class class)co 7352 sSet csts 17076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-sets 17077 |
| This theorem is referenced by: fvsetsid 17081 fsets 17082 setsabs 17092 setscom 17093 setsidvald 17112 setsid 17120 estrres 18047 symgvalstruct 19311 setsstrset 37201 setsidel 47500 setsnidel 47501 setsv 47502 |
| Copyright terms: Public domain | W3C validator |