![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsval | Structured version Visualization version GIF version |
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
setsval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5425 | . . 3 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
2 | setsvalg 17046 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩})) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝑆 ∈ 𝑉 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩})) |
4 | dmsnopg 6169 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴}) | |
5 | 4 | difeq2d 4086 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (V ∖ dom {⟨𝐴, 𝐵⟩}) = (V ∖ {𝐴})) |
6 | 5 | reseq2d 5941 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) = (𝑆 ↾ (V ∖ {𝐴}))) |
7 | 6 | uneq1d 4126 | . 2 ⊢ (𝐵 ∈ 𝑊 → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
8 | 3, 7 | sylan9eq 2793 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 {csn 4590 ⟨cop 4596 dom cdm 5637 ↾ cres 5639 (class class class)co 7361 sSet csts 17043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-res 5649 df-iota 6452 df-fun 6502 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-sets 17044 |
This theorem is referenced by: fvsetsid 17048 fsets 17049 setsabs 17059 setscom 17060 setsidvald 17079 setsidvaldOLD 17080 setsid 17088 estrres 18035 symgvalstruct 19186 symgvalstructOLD 19187 setsstrset 35657 setsidel 45658 setsnidel 45659 setsv 45660 |
Copyright terms: Public domain | W3C validator |