| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsval | Structured version Visualization version GIF version | ||
| Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| setsval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5411 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 2 | setsvalg 17095 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 〈𝐴, 𝐵〉 ∈ V) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝑆 ∈ 𝑉 → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) |
| 4 | dmsnopg 6166 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 5 | 4 | difeq2d 4079 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (V ∖ dom {〈𝐴, 𝐵〉}) = (V ∖ {𝐴})) |
| 6 | 5 | reseq2d 5934 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) = (𝑆 ↾ (V ∖ {𝐴}))) |
| 7 | 6 | uneq1d 4120 | . 2 ⊢ (𝐵 ∈ 𝑊 → ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 8 | 3, 7 | sylan9eq 2784 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ∪ cun 3903 {csn 4579 〈cop 4585 dom cdm 5623 ↾ cres 5625 (class class class)co 7353 sSet csts 17092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-sets 17093 |
| This theorem is referenced by: fvsetsid 17097 fsets 17098 setsabs 17108 setscom 17109 setsidvald 17128 setsid 17136 estrres 18063 symgvalstruct 19294 setsstrset 37109 setsidel 47361 setsnidel 47362 setsv 47363 |
| Copyright terms: Public domain | W3C validator |