MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsval Structured version   Visualization version   GIF version

Theorem setsval 17075
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsval ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))

Proof of Theorem setsval
StepHypRef Expression
1 opex 5404 . . 3 𝐴, 𝐵⟩ ∈ V
2 setsvalg 17074 . . 3 ((𝑆𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
31, 2mpan2 691 . 2 (𝑆𝑉 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
4 dmsnopg 6160 . . . . 5 (𝐵𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
54difeq2d 4076 . . . 4 (𝐵𝑊 → (V ∖ dom {⟨𝐴, 𝐵⟩}) = (V ∖ {𝐴}))
65reseq2d 5928 . . 3 (𝐵𝑊 → (𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) = (𝑆 ↾ (V ∖ {𝐴})))
76uneq1d 4117 . 2 (𝐵𝑊 → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
83, 7sylan9eq 2786 1 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899  cun 3900  {csn 4576  cop 4582  dom cdm 5616  cres 5618  (class class class)co 7346   sSet csts 17071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-sets 17072
This theorem is referenced by:  fvsetsid  17076  fsets  17077  setsabs  17087  setscom  17088  setsidvald  17107  setsid  17115  estrres  18042  symgvalstruct  19307  setsstrset  37169  setsidel  47406  setsnidel  47407  setsv  47408
  Copyright terms: Public domain W3C validator