![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsval | Structured version Visualization version GIF version |
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
setsval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5464 | . . 3 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
2 | setsvalg 17098 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩})) | |
3 | 1, 2 | mpan2 689 | . 2 ⊢ (𝑆 ∈ 𝑉 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩})) |
4 | dmsnopg 6212 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴}) | |
5 | 4 | difeq2d 4122 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (V ∖ dom {⟨𝐴, 𝐵⟩}) = (V ∖ {𝐴})) |
6 | 5 | reseq2d 5981 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) = (𝑆 ↾ (V ∖ {𝐴}))) |
7 | 6 | uneq1d 4162 | . 2 ⊢ (𝐵 ∈ 𝑊 → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
8 | 3, 7 | sylan9eq 2792 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 ∪ cun 3946 {csn 4628 ⟨cop 4634 dom cdm 5676 ↾ cres 5678 (class class class)co 7408 sSet csts 17095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-sets 17096 |
This theorem is referenced by: fvsetsid 17100 fsets 17101 setsabs 17111 setscom 17112 setsidvald 17131 setsidvaldOLD 17132 setsid 17140 estrres 18090 symgvalstruct 19263 symgvalstructOLD 19264 setsstrset 36012 setsidel 46034 setsnidel 46035 setsv 46036 |
Copyright terms: Public domain | W3C validator |