![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signswlid | Structured version Visualization version GIF version |
Description: The zero-skipping operation keeps nonzeros. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
Ref | Expression |
---|---|
signsw.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsw.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
Ref | Expression |
---|---|
signswlid | β’ (((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β (π ⨣ π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsw.p | . . . 4 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
2 | 1 | signspval 33558 | . . 3 β’ ((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β (π ⨣ π) = if(π = 0, π, π)) |
3 | 2 | adantr 481 | . 2 β’ (((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β (π ⨣ π) = if(π = 0, π, π)) |
4 | simpr 485 | . . . 4 β’ (((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β π β 0) | |
5 | 4 | neneqd 2945 | . . 3 β’ (((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β Β¬ π = 0) |
6 | 5 | iffalsed 4539 | . 2 β’ (((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β if(π = 0, π, π) = π) |
7 | 3, 6 | eqtrd 2772 | 1 β’ (((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β (π ⨣ π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 ifcif 4528 {cpr 4630 {ctp 4632 β¨cop 4634 βcfv 6543 (class class class)co 7408 β cmpo 7410 0cc0 11109 1c1 11110 -cneg 11444 ndxcnx 17125 Basecbs 17143 +gcplusg 17196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 |
This theorem is referenced by: signsvtn0 33576 |
Copyright terms: Public domain | W3C validator |