Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswlid Structured version   Visualization version   GIF version

Theorem signswlid 33565
Description: The zero-skipping operation keeps nonzeros. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsw.p ⨣ = (π‘Ž ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, π‘Ž, 𝑏))
signsw.w π‘Š = {⟨(Baseβ€˜ndx), {-1, 0, 1}⟩, ⟨(+gβ€˜ndx), ⨣ ⟩}
Assertion
Ref Expression
signswlid (((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ π‘Œ β‰  0) β†’ (𝑋 ⨣ π‘Œ) = π‘Œ)
Distinct variable groups:   π‘Ž,𝑏,𝑋   π‘Œ,π‘Ž,𝑏
Allowed substitution hints:   ⨣ (π‘Ž,𝑏)   π‘Š(π‘Ž,𝑏)

Proof of Theorem signswlid
StepHypRef Expression
1 signsw.p . . . 4 ⨣ = (π‘Ž ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, π‘Ž, 𝑏))
21signspval 33558 . . 3 ((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) β†’ (𝑋 ⨣ π‘Œ) = if(π‘Œ = 0, 𝑋, π‘Œ))
32adantr 481 . 2 (((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ π‘Œ β‰  0) β†’ (𝑋 ⨣ π‘Œ) = if(π‘Œ = 0, 𝑋, π‘Œ))
4 simpr 485 . . . 4 (((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ π‘Œ β‰  0) β†’ π‘Œ β‰  0)
54neneqd 2945 . . 3 (((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ π‘Œ β‰  0) β†’ Β¬ π‘Œ = 0)
65iffalsed 4539 . 2 (((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ π‘Œ β‰  0) β†’ if(π‘Œ = 0, 𝑋, π‘Œ) = π‘Œ)
73, 6eqtrd 2772 1 (((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ π‘Œ β‰  0) β†’ (𝑋 ⨣ π‘Œ) = π‘Œ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  ifcif 4528  {cpr 4630  {ctp 4632  βŸ¨cop 4634  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  0cc0 11109  1c1 11110  -cneg 11444  ndxcnx 17125  Basecbs 17143  +gcplusg 17196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413
This theorem is referenced by:  signsvtn0  33576
  Copyright terms: Public domain W3C validator