Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvtn0 Structured version   Visualization version   GIF version

Theorem signsvtn0 31745
Description: If the last letter is nonzero, then this is the zero-skipping sign. (Contributed by Thierry Arnoux, 8-Oct-2018.) (Proof shortened by AV, 3-Nov-2022.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvtn0.1 𝑁 = (♯‘𝐹)
Assertion
Ref Expression
signsvtn0 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐹)‘(𝑁 − 1)) = (sgn‘(𝐹‘(𝑁 − 1))))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝐹,𝑎,𝑏,𝑓,𝑖,𝑛   𝑁,𝑎   𝑓,𝑏,𝑖,𝑛,𝑁   𝑇,𝑎,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛)   𝐹(𝑗)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvtn0
StepHypRef Expression
1 eldifsn 4718 . . . . . . . . . . . 12 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
21biimpi 217 . . . . . . . . . . 11 (𝐹 ∈ (Word ℝ ∖ {∅}) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
32adantr 481 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
43simpld 495 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹 ∈ Word ℝ)
54adantr 481 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → 𝐹 ∈ Word ℝ)
6 wrdf 13861 . . . . . . . 8 (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
75, 6syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
8 lennncl 13879 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ)
93, 8syl 17 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (♯‘𝐹) ∈ ℕ)
109adantr 481 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (♯‘𝐹) ∈ ℕ)
11 lbfzo0 13072 . . . . . . . 8 (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ)
1210, 11sylibr 235 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → 0 ∈ (0..^(♯‘𝐹)))
137, 12ffvelrnd 6850 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (𝐹‘0) ∈ ℝ)
14 signsv.p . . . . . . 7 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
15 signsv.w . . . . . . 7 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
16 signsv.t . . . . . . 7 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
17 signsv.v . . . . . . 7 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
1814, 15, 16, 17signstf0 31743 . . . . . 6 ((𝐹‘0) ∈ ℝ → (𝑇‘⟨“(𝐹‘0)”⟩) = ⟨“(sgn‘(𝐹‘0))”⟩)
1913, 18syl 17 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (𝑇‘⟨“(𝐹‘0)”⟩) = ⟨“(sgn‘(𝐹‘0))”⟩)
20 signsvtn0.1 . . . . . . . 8 𝑁 = (♯‘𝐹)
21 simpr 485 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → 𝑁 = 1)
2220, 21syl5eqr 2875 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (♯‘𝐹) = 1)
23 eqs1 13961 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ (♯‘𝐹) = 1) → 𝐹 = ⟨“(𝐹‘0)”⟩)
245, 22, 23syl2anc 584 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → 𝐹 = ⟨“(𝐹‘0)”⟩)
2524fveq2d 6673 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (𝑇𝐹) = (𝑇‘⟨“(𝐹‘0)”⟩))
26 oveq1 7157 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
27 1m1e0 11703 . . . . . . . . . 10 (1 − 1) = 0
2826, 27syl6eq 2877 . . . . . . . . 9 (𝑁 = 1 → (𝑁 − 1) = 0)
2928fveq2d 6673 . . . . . . . 8 (𝑁 = 1 → (𝐹‘(𝑁 − 1)) = (𝐹‘0))
3029fveq2d 6673 . . . . . . 7 (𝑁 = 1 → (sgn‘(𝐹‘(𝑁 − 1))) = (sgn‘(𝐹‘0)))
3130s1eqd 13950 . . . . . 6 (𝑁 = 1 → ⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩ = ⟨“(sgn‘(𝐹‘0))”⟩)
3221, 31syl 17 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → ⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩ = ⟨“(sgn‘(𝐹‘0))”⟩)
3319, 25, 323eqtr4d 2871 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (𝑇𝐹) = ⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩)
3421, 28syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (𝑁 − 1) = 0)
3533, 34fveq12d 6676 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → ((𝑇𝐹)‘(𝑁 − 1)) = (⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩‘0))
364, 6syl 17 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
3720oveq1i 7160 . . . . . . . . 9 (𝑁 − 1) = ((♯‘𝐹) − 1)
38 fzo0end 13124 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
393, 8, 383syl 18 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
4037, 39eqeltrid 2922 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝑁 − 1) ∈ (0..^(♯‘𝐹)))
4136, 40ffvelrnd 6850 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹‘(𝑁 − 1)) ∈ ℝ)
4241rexrd 10685 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹‘(𝑁 − 1)) ∈ ℝ*)
43 sgncl 31701 . . . . . 6 ((𝐹‘(𝑁 − 1)) ∈ ℝ* → (sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1})
4442, 43syl 17 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1})
4544adantr 481 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1})
46 s1fv 13959 . . . 4 ((sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1} → (⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩‘0) = (sgn‘(𝐹‘(𝑁 − 1))))
4745, 46syl 17 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩‘0) = (sgn‘(𝐹‘(𝑁 − 1))))
4835, 47eqtrd 2861 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → ((𝑇𝐹)‘(𝑁 − 1)) = (sgn‘(𝐹‘(𝑁 − 1))))
49 fzossfz 13051 . . . . . . . . . 10 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
5049, 39sseldi 3969 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((♯‘𝐹) − 1) ∈ (0...(♯‘𝐹)))
51 pfxres 14036 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ ((♯‘𝐹) − 1) ∈ (0...(♯‘𝐹))) → (𝐹 prefix ((♯‘𝐹) − 1)) = (𝐹 ↾ (0..^((♯‘𝐹) − 1))))
524, 50, 51syl2anc 584 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 prefix ((♯‘𝐹) − 1)) = (𝐹 ↾ (0..^((♯‘𝐹) − 1))))
5352oveq1d 7165 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ++ ⟨“(lastS‘𝐹)”⟩))
54 pfxlswccat 14070 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = 𝐹)
5554eqcomd 2832 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → 𝐹 = ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩))
563, 55syl 17 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹 = ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩))
5737oveq2i 7161 . . . . . . . . . 10 (0..^(𝑁 − 1)) = (0..^((♯‘𝐹) − 1))
5857a1i 11 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (0..^(𝑁 − 1)) = (0..^((♯‘𝐹) − 1)))
5958reseq2d 5852 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 ↾ (0..^(𝑁 − 1))) = (𝐹 ↾ (0..^((♯‘𝐹) − 1))))
6037a1i 11 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝑁 − 1) = ((♯‘𝐹) − 1))
6160fveq2d 6673 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹‘(𝑁 − 1)) = (𝐹‘((♯‘𝐹) − 1)))
62 lsw 13911 . . . . . . . . . . 11 (𝐹 ∈ (Word ℝ ∖ {∅}) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
6362adantr 481 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
6461, 63eqtr4d 2864 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹‘(𝑁 − 1)) = (lastS‘𝐹))
6564s1eqd 13950 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ⟨“(𝐹‘(𝑁 − 1))”⟩ = ⟨“(lastS‘𝐹)”⟩)
6659, 65oveq12d 7168 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ++ ⟨“(lastS‘𝐹)”⟩))
6753, 56, 663eqtr4d 2871 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹 = ((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))
6867fveq2d 6673 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝑇𝐹) = (𝑇‘((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)))
69 ffn 6513 . . . . . . . . . . 11 (𝐹:(0..^(♯‘𝐹))⟶ℝ → 𝐹 Fn (0..^(♯‘𝐹)))
704, 6, 693syl 18 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹 Fn (0..^(♯‘𝐹)))
7120a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝑁 = (♯‘𝐹))
7271oveq2d 7166 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (0..^𝑁) = (0..^(♯‘𝐹)))
7372fneq2d 6446 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 Fn (0..^𝑁) ↔ 𝐹 Fn (0..^(♯‘𝐹))))
7470, 73mpbird 258 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹 Fn (0..^𝑁))
7520, 9eqeltrid 2922 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝑁 ∈ ℕ)
7675nnnn0d 11949 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝑁 ∈ ℕ0)
77 nn0z 11999 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
78 fzossrbm1 13061 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
7976, 77, 783syl 18 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
80 fnssres 6469 . . . . . . . . 9 ((𝐹 Fn (0..^𝑁) ∧ (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) → (𝐹 ↾ (0..^(𝑁 − 1))) Fn (0..^(𝑁 − 1)))
8174, 79, 80syl2anc 584 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 ↾ (0..^(𝑁 − 1))) Fn (0..^(𝑁 − 1)))
82 hashfn 13731 . . . . . . . 8 ((𝐹 ↾ (0..^(𝑁 − 1))) Fn (0..^(𝑁 − 1)) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = (♯‘(0..^(𝑁 − 1))))
8381, 82syl 17 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = (♯‘(0..^(𝑁 − 1))))
84 nnm1nn0 11932 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
85 hashfzo0 13786 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 → (♯‘(0..^(𝑁 − 1))) = (𝑁 − 1))
8675, 84, 853syl 18 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (♯‘(0..^(𝑁 − 1))) = (𝑁 − 1))
8783, 86eqtrd 2861 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = (𝑁 − 1))
8887eqcomd 2832 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝑁 − 1) = (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))))
8968, 88fveq12d 6676 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇‘((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))))
9089adantr 481 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇‘((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))))
9152, 59eqtr4d 2864 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 prefix ((♯‘𝐹) − 1)) = (𝐹 ↾ (0..^(𝑁 − 1))))
92 pfxcl 14034 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (𝐹 prefix ((♯‘𝐹) − 1)) ∈ Word ℝ)
934, 92syl 17 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 prefix ((♯‘𝐹) − 1)) ∈ Word ℝ)
9491, 93eqeltrrd 2919 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ)
9594adantr 481 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ)
9687adantr 481 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = (𝑁 − 1))
9775adantr 481 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℕ)
9897nncnd 11648 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℂ)
99 1cnd 10630 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → 1 ∈ ℂ)
100 simpr 485 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → 𝑁 ≠ 1)
10198, 99, 100subne0d 11000 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0)
10296, 101eqnetrd 3088 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) ≠ 0)
103 fveq2 6669 . . . . . . . . 9 ((𝐹 ↾ (0..^(𝑁 − 1))) = ∅ → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = (♯‘∅))
104 hash0 13723 . . . . . . . . 9 (♯‘∅) = 0
105103, 104syl6eq 2877 . . . . . . . 8 ((𝐹 ↾ (0..^(𝑁 − 1))) = ∅ → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = 0)
106105necon3i 3053 . . . . . . 7 ((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) ≠ 0 → (𝐹 ↾ (0..^(𝑁 − 1))) ≠ ∅)
107102, 106syl 17 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (𝐹 ↾ (0..^(𝑁 − 1))) ≠ ∅)
10895, 107jca 512 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ ∧ (𝐹 ↾ (0..^(𝑁 − 1))) ≠ ∅))
109 eldifsn 4718 . . . . 5 ((𝐹 ↾ (0..^(𝑁 − 1))) ∈ (Word ℝ ∖ {∅}) ↔ ((𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ ∧ (𝐹 ↾ (0..^(𝑁 − 1))) ≠ ∅))
110108, 109sylibr 235 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (𝐹 ↾ (0..^(𝑁 − 1))) ∈ (Word ℝ ∖ {∅}))
11141adantr 481 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (𝐹‘(𝑁 − 1)) ∈ ℝ)
11214, 15, 16, 17signstfvn 31744 . . . 4 (((𝐹 ↾ (0..^(𝑁 − 1))) ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ) → ((𝑇‘((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))) = (((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
113110, 111, 112syl2anc 584 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((𝑇‘((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))) = (((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
114 lennncl 13879 . . . . . 6 (((𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ ∧ (𝐹 ↾ (0..^(𝑁 − 1))) ≠ ∅) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) ∈ ℕ)
115 fzo0end 13124 . . . . . 6 ((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) ∈ ℕ → ((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1) ∈ (0..^(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))))
116108, 114, 1153syl 18 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1) ∈ (0..^(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))))
11714, 15, 16, 17signstcl 31740 . . . . 5 (((𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ ∧ ((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1) ∈ (0..^(♯‘(𝐹 ↾ (0..^(𝑁 − 1)))))) → ((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) ∈ {-1, 0, 1})
11895, 116, 117syl2anc 584 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) ∈ {-1, 0, 1})
11944adantr 481 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1})
120 simpr 485 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹‘(𝑁 − 1)) ≠ 0)
121 sgn0bi 31710 . . . . . . . 8 ((𝐹‘(𝑁 − 1)) ∈ ℝ* → ((sgn‘(𝐹‘(𝑁 − 1))) = 0 ↔ (𝐹‘(𝑁 − 1)) = 0))
122121necon3bid 3065 . . . . . . 7 ((𝐹‘(𝑁 − 1)) ∈ ℝ* → ((sgn‘(𝐹‘(𝑁 − 1))) ≠ 0 ↔ (𝐹‘(𝑁 − 1)) ≠ 0))
123122biimpar 478 . . . . . 6 (((𝐹‘(𝑁 − 1)) ∈ ℝ* ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (sgn‘(𝐹‘(𝑁 − 1))) ≠ 0)
12442, 120, 123syl2anc 584 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (sgn‘(𝐹‘(𝑁 − 1))) ≠ 0)
125124adantr 481 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (sgn‘(𝐹‘(𝑁 − 1))) ≠ 0)
12614, 15signswlid 31734 . . . 4 (((((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) ∈ {-1, 0, 1} ∧ (sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1}) ∧ (sgn‘(𝐹‘(𝑁 − 1))) ≠ 0) → (((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = (sgn‘(𝐹‘(𝑁 − 1))))
127118, 119, 125, 126syl21anc 835 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = (sgn‘(𝐹‘(𝑁 − 1))))
12890, 113, 1273eqtrd 2865 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((𝑇𝐹)‘(𝑁 − 1)) = (sgn‘(𝐹‘(𝑁 − 1))))
12948, 128pm2.61dane 3109 1 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐹)‘(𝑁 − 1)) = (sgn‘(𝐹‘(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wne 3021  cdif 3937  wss 3940  c0 4295  ifcif 4470  {csn 4564  {cpr 4566  {ctp 4568  cop 4570  cmpt 5143  cres 5556   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7150  cmpo 7152  cr 10530  0cc0 10531  1c1 10532  *cxr 10668  cmin 10864  -cneg 10865  cn 11632  0cn0 11891  cz 11975  ...cfz 12887  ..^cfzo 13028  chash 13685  Word cword 13856  lastSclsw 13909   ++ cconcat 13917  ⟨“cs1 13944   prefix cpfx 14027  sgncsgn 14440  Σcsu 15037  ndxcnx 16475  Basecbs 16478  +gcplusg 16560   Σg cgsu 16709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12888  df-fzo 13029  df-seq 13365  df-hash 13686  df-word 13857  df-lsw 13910  df-concat 13918  df-s1 13945  df-substr 13998  df-pfx 14028  df-sgn 14441  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573  df-0g 16710  df-gsum 16711  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mulg 18170  df-cntz 18392
This theorem is referenced by:  signsvfpn  31760  signsvfnn  31761
  Copyright terms: Public domain W3C validator