Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvtn0 Structured version   Visualization version   GIF version

Theorem signsvtn0 32449
Description: If the last letter is nonzero, then this is the zero-skipping sign. (Contributed by Thierry Arnoux, 8-Oct-2018.) (Proof shortened by AV, 3-Nov-2022.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvtn0.1 𝑁 = (♯‘𝐹)
Assertion
Ref Expression
signsvtn0 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐹)‘(𝑁 − 1)) = (sgn‘(𝐹‘(𝑁 − 1))))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝐹,𝑎,𝑏,𝑓,𝑖,𝑛   𝑁,𝑎   𝑓,𝑏,𝑖,𝑛,𝑁   𝑇,𝑎,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛)   𝐹(𝑗)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvtn0
StepHypRef Expression
1 eldifsn 4717 . . . . . . . . . . . 12 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
21biimpi 215 . . . . . . . . . . 11 (𝐹 ∈ (Word ℝ ∖ {∅}) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
32adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
43simpld 494 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹 ∈ Word ℝ)
54adantr 480 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → 𝐹 ∈ Word ℝ)
6 wrdf 14150 . . . . . . . 8 (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
75, 6syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
8 lennncl 14165 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ)
93, 8syl 17 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (♯‘𝐹) ∈ ℕ)
109adantr 480 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (♯‘𝐹) ∈ ℕ)
11 lbfzo0 13355 . . . . . . . 8 (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ)
1210, 11sylibr 233 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → 0 ∈ (0..^(♯‘𝐹)))
137, 12ffvelrnd 6944 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (𝐹‘0) ∈ ℝ)
14 signsv.p . . . . . . 7 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
15 signsv.w . . . . . . 7 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
16 signsv.t . . . . . . 7 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
17 signsv.v . . . . . . 7 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
1814, 15, 16, 17signstf0 32447 . . . . . 6 ((𝐹‘0) ∈ ℝ → (𝑇‘⟨“(𝐹‘0)”⟩) = ⟨“(sgn‘(𝐹‘0))”⟩)
1913, 18syl 17 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (𝑇‘⟨“(𝐹‘0)”⟩) = ⟨“(sgn‘(𝐹‘0))”⟩)
20 signsvtn0.1 . . . . . . . 8 𝑁 = (♯‘𝐹)
21 simpr 484 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → 𝑁 = 1)
2220, 21eqtr3id 2793 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (♯‘𝐹) = 1)
23 eqs1 14245 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ (♯‘𝐹) = 1) → 𝐹 = ⟨“(𝐹‘0)”⟩)
245, 22, 23syl2anc 583 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → 𝐹 = ⟨“(𝐹‘0)”⟩)
2524fveq2d 6760 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (𝑇𝐹) = (𝑇‘⟨“(𝐹‘0)”⟩))
26 oveq1 7262 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
27 1m1e0 11975 . . . . . . . . . 10 (1 − 1) = 0
2826, 27eqtrdi 2795 . . . . . . . . 9 (𝑁 = 1 → (𝑁 − 1) = 0)
2928fveq2d 6760 . . . . . . . 8 (𝑁 = 1 → (𝐹‘(𝑁 − 1)) = (𝐹‘0))
3029fveq2d 6760 . . . . . . 7 (𝑁 = 1 → (sgn‘(𝐹‘(𝑁 − 1))) = (sgn‘(𝐹‘0)))
3130s1eqd 14234 . . . . . 6 (𝑁 = 1 → ⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩ = ⟨“(sgn‘(𝐹‘0))”⟩)
3221, 31syl 17 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → ⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩ = ⟨“(sgn‘(𝐹‘0))”⟩)
3319, 25, 323eqtr4d 2788 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (𝑇𝐹) = ⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩)
3421, 28syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (𝑁 − 1) = 0)
3533, 34fveq12d 6763 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → ((𝑇𝐹)‘(𝑁 − 1)) = (⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩‘0))
364, 6syl 17 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
3720oveq1i 7265 . . . . . . . . 9 (𝑁 − 1) = ((♯‘𝐹) − 1)
38 fzo0end 13407 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
393, 8, 383syl 18 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
4037, 39eqeltrid 2843 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝑁 − 1) ∈ (0..^(♯‘𝐹)))
4136, 40ffvelrnd 6944 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹‘(𝑁 − 1)) ∈ ℝ)
4241rexrd 10956 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹‘(𝑁 − 1)) ∈ ℝ*)
43 sgncl 32405 . . . . . 6 ((𝐹‘(𝑁 − 1)) ∈ ℝ* → (sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1})
4442, 43syl 17 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1})
4544adantr 480 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1})
46 s1fv 14243 . . . 4 ((sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1} → (⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩‘0) = (sgn‘(𝐹‘(𝑁 − 1))))
4745, 46syl 17 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → (⟨“(sgn‘(𝐹‘(𝑁 − 1)))”⟩‘0) = (sgn‘(𝐹‘(𝑁 − 1))))
4835, 47eqtrd 2778 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 = 1) → ((𝑇𝐹)‘(𝑁 − 1)) = (sgn‘(𝐹‘(𝑁 − 1))))
49 fzossfz 13334 . . . . . . . . . 10 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
5049, 39sselid 3915 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((♯‘𝐹) − 1) ∈ (0...(♯‘𝐹)))
51 pfxres 14320 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ ((♯‘𝐹) − 1) ∈ (0...(♯‘𝐹))) → (𝐹 prefix ((♯‘𝐹) − 1)) = (𝐹 ↾ (0..^((♯‘𝐹) − 1))))
524, 50, 51syl2anc 583 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 prefix ((♯‘𝐹) − 1)) = (𝐹 ↾ (0..^((♯‘𝐹) − 1))))
5352oveq1d 7270 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ++ ⟨“(lastS‘𝐹)”⟩))
54 pfxlswccat 14354 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = 𝐹)
5554eqcomd 2744 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → 𝐹 = ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩))
563, 55syl 17 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹 = ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩))
5737oveq2i 7266 . . . . . . . . . 10 (0..^(𝑁 − 1)) = (0..^((♯‘𝐹) − 1))
5857a1i 11 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (0..^(𝑁 − 1)) = (0..^((♯‘𝐹) − 1)))
5958reseq2d 5880 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 ↾ (0..^(𝑁 − 1))) = (𝐹 ↾ (0..^((♯‘𝐹) − 1))))
6037a1i 11 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝑁 − 1) = ((♯‘𝐹) − 1))
6160fveq2d 6760 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹‘(𝑁 − 1)) = (𝐹‘((♯‘𝐹) − 1)))
62 lsw 14195 . . . . . . . . . . 11 (𝐹 ∈ (Word ℝ ∖ {∅}) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
6362adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
6461, 63eqtr4d 2781 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹‘(𝑁 − 1)) = (lastS‘𝐹))
6564s1eqd 14234 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ⟨“(𝐹‘(𝑁 − 1))”⟩ = ⟨“(lastS‘𝐹)”⟩)
6659, 65oveq12d 7273 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ++ ⟨“(lastS‘𝐹)”⟩))
6753, 56, 663eqtr4d 2788 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹 = ((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))
6867fveq2d 6760 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝑇𝐹) = (𝑇‘((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)))
69 ffn 6584 . . . . . . . . . . 11 (𝐹:(0..^(♯‘𝐹))⟶ℝ → 𝐹 Fn (0..^(♯‘𝐹)))
704, 6, 693syl 18 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹 Fn (0..^(♯‘𝐹)))
7120a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝑁 = (♯‘𝐹))
7271oveq2d 7271 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (0..^𝑁) = (0..^(♯‘𝐹)))
7372fneq2d 6511 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 Fn (0..^𝑁) ↔ 𝐹 Fn (0..^(♯‘𝐹))))
7470, 73mpbird 256 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝐹 Fn (0..^𝑁))
7520, 9eqeltrid 2843 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝑁 ∈ ℕ)
7675nnnn0d 12223 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → 𝑁 ∈ ℕ0)
77 nn0z 12273 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
78 fzossrbm1 13344 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
7976, 77, 783syl 18 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
80 fnssres 6539 . . . . . . . . 9 ((𝐹 Fn (0..^𝑁) ∧ (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) → (𝐹 ↾ (0..^(𝑁 − 1))) Fn (0..^(𝑁 − 1)))
8174, 79, 80syl2anc 583 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 ↾ (0..^(𝑁 − 1))) Fn (0..^(𝑁 − 1)))
82 hashfn 14018 . . . . . . . 8 ((𝐹 ↾ (0..^(𝑁 − 1))) Fn (0..^(𝑁 − 1)) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = (♯‘(0..^(𝑁 − 1))))
8381, 82syl 17 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = (♯‘(0..^(𝑁 − 1))))
84 nnm1nn0 12204 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
85 hashfzo0 14073 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 → (♯‘(0..^(𝑁 − 1))) = (𝑁 − 1))
8675, 84, 853syl 18 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (♯‘(0..^(𝑁 − 1))) = (𝑁 − 1))
8783, 86eqtrd 2778 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = (𝑁 − 1))
8887eqcomd 2744 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝑁 − 1) = (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))))
8968, 88fveq12d 6763 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇‘((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))))
9089adantr 480 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇‘((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))))
9152, 59eqtr4d 2781 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 prefix ((♯‘𝐹) − 1)) = (𝐹 ↾ (0..^(𝑁 − 1))))
92 pfxcl 14318 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (𝐹 prefix ((♯‘𝐹) − 1)) ∈ Word ℝ)
934, 92syl 17 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 prefix ((♯‘𝐹) − 1)) ∈ Word ℝ)
9491, 93eqeltrrd 2840 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ)
9594adantr 480 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ)
9687adantr 480 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = (𝑁 − 1))
9775adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℕ)
9897nncnd 11919 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℂ)
99 1cnd 10901 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → 1 ∈ ℂ)
100 simpr 484 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → 𝑁 ≠ 1)
10198, 99, 100subne0d 11271 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0)
10296, 101eqnetrd 3010 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) ≠ 0)
103 fveq2 6756 . . . . . . . . 9 ((𝐹 ↾ (0..^(𝑁 − 1))) = ∅ → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = (♯‘∅))
104 hash0 14010 . . . . . . . . 9 (♯‘∅) = 0
105103, 104eqtrdi 2795 . . . . . . . 8 ((𝐹 ↾ (0..^(𝑁 − 1))) = ∅ → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) = 0)
106105necon3i 2975 . . . . . . 7 ((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) ≠ 0 → (𝐹 ↾ (0..^(𝑁 − 1))) ≠ ∅)
107102, 106syl 17 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (𝐹 ↾ (0..^(𝑁 − 1))) ≠ ∅)
10895, 107jca 511 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ ∧ (𝐹 ↾ (0..^(𝑁 − 1))) ≠ ∅))
109 eldifsn 4717 . . . . 5 ((𝐹 ↾ (0..^(𝑁 − 1))) ∈ (Word ℝ ∖ {∅}) ↔ ((𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ ∧ (𝐹 ↾ (0..^(𝑁 − 1))) ≠ ∅))
110108, 109sylibr 233 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (𝐹 ↾ (0..^(𝑁 − 1))) ∈ (Word ℝ ∖ {∅}))
11141adantr 480 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (𝐹‘(𝑁 − 1)) ∈ ℝ)
11214, 15, 16, 17signstfvn 32448 . . . 4 (((𝐹 ↾ (0..^(𝑁 − 1))) ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ) → ((𝑇‘((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))) = (((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
113110, 111, 112syl2anc 583 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((𝑇‘((𝐹 ↾ (0..^(𝑁 − 1))) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))) = (((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
114 lennncl 14165 . . . . . 6 (((𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ ∧ (𝐹 ↾ (0..^(𝑁 − 1))) ≠ ∅) → (♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) ∈ ℕ)
115 fzo0end 13407 . . . . . 6 ((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) ∈ ℕ → ((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1) ∈ (0..^(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))))
116108, 114, 1153syl 18 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1) ∈ (0..^(♯‘(𝐹 ↾ (0..^(𝑁 − 1))))))
11714, 15, 16, 17signstcl 32444 . . . . 5 (((𝐹 ↾ (0..^(𝑁 − 1))) ∈ Word ℝ ∧ ((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1) ∈ (0..^(♯‘(𝐹 ↾ (0..^(𝑁 − 1)))))) → ((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) ∈ {-1, 0, 1})
11895, 116, 117syl2anc 583 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) ∈ {-1, 0, 1})
11944adantr 480 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1})
120 simpr 484 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (𝐹‘(𝑁 − 1)) ≠ 0)
121 sgn0bi 32414 . . . . . . . 8 ((𝐹‘(𝑁 − 1)) ∈ ℝ* → ((sgn‘(𝐹‘(𝑁 − 1))) = 0 ↔ (𝐹‘(𝑁 − 1)) = 0))
122121necon3bid 2987 . . . . . . 7 ((𝐹‘(𝑁 − 1)) ∈ ℝ* → ((sgn‘(𝐹‘(𝑁 − 1))) ≠ 0 ↔ (𝐹‘(𝑁 − 1)) ≠ 0))
123122biimpar 477 . . . . . 6 (((𝐹‘(𝑁 − 1)) ∈ ℝ* ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (sgn‘(𝐹‘(𝑁 − 1))) ≠ 0)
12442, 120, 123syl2anc 583 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → (sgn‘(𝐹‘(𝑁 − 1))) ≠ 0)
125124adantr 480 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (sgn‘(𝐹‘(𝑁 − 1))) ≠ 0)
12614, 15signswlid 32438 . . . 4 (((((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) ∈ {-1, 0, 1} ∧ (sgn‘(𝐹‘(𝑁 − 1))) ∈ {-1, 0, 1}) ∧ (sgn‘(𝐹‘(𝑁 − 1))) ≠ 0) → (((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = (sgn‘(𝐹‘(𝑁 − 1))))
127118, 119, 125, 126syl21anc 834 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → (((𝑇‘(𝐹 ↾ (0..^(𝑁 − 1))))‘((♯‘(𝐹 ↾ (0..^(𝑁 − 1)))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = (sgn‘(𝐹‘(𝑁 − 1))))
12890, 113, 1273eqtrd 2782 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) ∧ 𝑁 ≠ 1) → ((𝑇𝐹)‘(𝑁 − 1)) = (sgn‘(𝐹‘(𝑁 − 1))))
12948, 128pm2.61dane 3031 1 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐹)‘(𝑁 − 1)) = (sgn‘(𝐹‘(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880  wss 3883  c0 4253  ifcif 4456  {csn 4558  {cpr 4560  {ctp 4562  cop 4564  cmpt 5153  cres 5582   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  0cc0 10802  1c1 10803  *cxr 10939  cmin 11135  -cneg 11136  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145  lastSclsw 14193   ++ cconcat 14201  ⟨“cs1 14228   prefix cpfx 14311  sgncsgn 14725  Σcsu 15325  ndxcnx 16822  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-sgn 14726  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mulg 18616  df-cntz 18838
This theorem is referenced by:  signsvfpn  32464  signsvfnn  32465
  Copyright terms: Public domain W3C validator