![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signswn0 | Structured version Visualization version GIF version |
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
Ref | Expression |
---|---|
signsw.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsw.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
Ref | Expression |
---|---|
signswn0 | β’ (((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β (π ⨣ π) β 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsw.p | . . . 4 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
2 | 1 | signspval 33862 | . . 3 β’ ((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β (π ⨣ π) = if(π = 0, π, π)) |
3 | 2 | adantr 480 | . 2 β’ (((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β (π ⨣ π) = if(π = 0, π, π)) |
4 | neeq1 3002 | . . 3 β’ (π = if(π = 0, π, π) β (π β 0 β if(π = 0, π, π) β 0)) | |
5 | neeq1 3002 | . . 3 β’ (π = if(π = 0, π, π) β (π β 0 β if(π = 0, π, π) β 0)) | |
6 | simplr 766 | . . 3 β’ ((((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β§ π = 0) β π β 0) | |
7 | simpr 484 | . . . 4 β’ ((((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β§ Β¬ π = 0) β Β¬ π = 0) | |
8 | 7 | neqned 2946 | . . 3 β’ ((((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β§ Β¬ π = 0) β π β 0) |
9 | 4, 5, 6, 8 | ifbothda 4566 | . 2 β’ (((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β if(π = 0, π, π) β 0) |
10 | 3, 9 | eqnetrd 3007 | 1 β’ (((π β {-1, 0, 1} β§ π β {-1, 0, 1}) β§ π β 0) β (π ⨣ π) β 0) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 ifcif 4528 {cpr 4630 {ctp 4632 β¨cop 4634 βcfv 6543 (class class class)co 7412 β cmpo 7414 0cc0 11113 1c1 11114 -cneg 11450 ndxcnx 17131 Basecbs 17149 +gcplusg 17202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 |
This theorem is referenced by: signstfvneq0 33882 |
Copyright terms: Public domain | W3C validator |