Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswn0 Structured version   Visualization version   GIF version

Theorem signswn0 32439
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswn0 (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → (𝑋 𝑌) ≠ 0)
Distinct variable groups:   𝑎,𝑏,𝑋   𝑌,𝑎,𝑏
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswn0
StepHypRef Expression
1 signsw.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
21signspval 32431 . . 3 ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
32adantr 480 . 2 (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
4 neeq1 3005 . . 3 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑋 ≠ 0 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 0))
5 neeq1 3005 . . 3 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑌 ≠ 0 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 0))
6 simplr 765 . . 3 ((((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) ∧ 𝑌 = 0) → 𝑋 ≠ 0)
7 simpr 484 . . . 4 ((((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) ∧ ¬ 𝑌 = 0) → ¬ 𝑌 = 0)
87neqned 2949 . . 3 ((((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
94, 5, 6, 8ifbothda 4494 . 2 (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → if(𝑌 = 0, 𝑋, 𝑌) ≠ 0)
103, 9eqnetrd 3010 1 (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → (𝑋 𝑌) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  ifcif 4456  {cpr 4560  {ctp 4562  cop 4564  cfv 6418  (class class class)co 7255  cmpo 7257  0cc0 10802  1c1 10803  -cneg 11136  ndxcnx 16822  Basecbs 16840  +gcplusg 16888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  signstfvneq0  32451
  Copyright terms: Public domain W3C validator