Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswn0 Structured version   Visualization version   GIF version

Theorem signswn0 33870
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsw.p ⨣ = (π‘Ž ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, π‘Ž, 𝑏))
signsw.w π‘Š = {⟨(Baseβ€˜ndx), {-1, 0, 1}⟩, ⟨(+gβ€˜ndx), ⨣ ⟩}
Assertion
Ref Expression
signswn0 (((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ 𝑋 β‰  0) β†’ (𝑋 ⨣ π‘Œ) β‰  0)
Distinct variable groups:   π‘Ž,𝑏,𝑋   π‘Œ,π‘Ž,𝑏
Allowed substitution hints:   ⨣ (π‘Ž,𝑏)   π‘Š(π‘Ž,𝑏)

Proof of Theorem signswn0
StepHypRef Expression
1 signsw.p . . . 4 ⨣ = (π‘Ž ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, π‘Ž, 𝑏))
21signspval 33862 . . 3 ((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) β†’ (𝑋 ⨣ π‘Œ) = if(π‘Œ = 0, 𝑋, π‘Œ))
32adantr 480 . 2 (((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ 𝑋 β‰  0) β†’ (𝑋 ⨣ π‘Œ) = if(π‘Œ = 0, 𝑋, π‘Œ))
4 neeq1 3002 . . 3 (𝑋 = if(π‘Œ = 0, 𝑋, π‘Œ) β†’ (𝑋 β‰  0 ↔ if(π‘Œ = 0, 𝑋, π‘Œ) β‰  0))
5 neeq1 3002 . . 3 (π‘Œ = if(π‘Œ = 0, 𝑋, π‘Œ) β†’ (π‘Œ β‰  0 ↔ if(π‘Œ = 0, 𝑋, π‘Œ) β‰  0))
6 simplr 766 . . 3 ((((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ 𝑋 β‰  0) ∧ π‘Œ = 0) β†’ 𝑋 β‰  0)
7 simpr 484 . . . 4 ((((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ 𝑋 β‰  0) ∧ Β¬ π‘Œ = 0) β†’ Β¬ π‘Œ = 0)
87neqned 2946 . . 3 ((((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ 𝑋 β‰  0) ∧ Β¬ π‘Œ = 0) β†’ π‘Œ β‰  0)
94, 5, 6, 8ifbothda 4566 . 2 (((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ 𝑋 β‰  0) β†’ if(π‘Œ = 0, 𝑋, π‘Œ) β‰  0)
103, 9eqnetrd 3007 1 (((𝑋 ∈ {-1, 0, 1} ∧ π‘Œ ∈ {-1, 0, 1}) ∧ 𝑋 β‰  0) β†’ (𝑋 ⨣ π‘Œ) β‰  0)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  ifcif 4528  {cpr 4630  {ctp 4632  βŸ¨cop 4634  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414  0cc0 11113  1c1 11114  -cneg 11450  ndxcnx 17131  Basecbs 17149  +gcplusg 17202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417
This theorem is referenced by:  signstfvneq0  33882
  Copyright terms: Public domain W3C validator