Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > signswn0 | Structured version Visualization version GIF version |
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
Ref | Expression |
---|---|
signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsw.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
Ref | Expression |
---|---|
signswn0 | ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → (𝑋 ⨣ 𝑌) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsw.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
2 | 1 | signspval 32531 | . . 3 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
3 | 2 | adantr 481 | . 2 ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
4 | neeq1 3006 | . . 3 ⊢ (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑋 ≠ 0 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 0)) | |
5 | neeq1 3006 | . . 3 ⊢ (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑌 ≠ 0 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 0)) | |
6 | simplr 766 | . . 3 ⊢ ((((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) ∧ 𝑌 = 0) → 𝑋 ≠ 0) | |
7 | simpr 485 | . . . 4 ⊢ ((((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) ∧ ¬ 𝑌 = 0) → ¬ 𝑌 = 0) | |
8 | 7 | neqned 2950 | . . 3 ⊢ ((((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0) |
9 | 4, 5, 6, 8 | ifbothda 4497 | . 2 ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → if(𝑌 = 0, 𝑋, 𝑌) ≠ 0) |
10 | 3, 9 | eqnetrd 3011 | 1 ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → (𝑋 ⨣ 𝑌) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ifcif 4459 {cpr 4563 {ctp 4565 〈cop 4567 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 0cc0 10871 1c1 10872 -cneg 11206 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: signstfvneq0 32551 |
Copyright terms: Public domain | W3C validator |