| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signswrid | Structured version Visualization version GIF version | ||
| Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsw.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| Ref | Expression |
|---|---|
| signswrid | ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11186 | . . . 4 ⊢ 0 ∈ V | |
| 2 | 1 | tpid2 4742 | . . 3 ⊢ 0 ∈ {-1, 0, 1} |
| 3 | signsw.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 4 | 3 | signspval 34551 | . . 3 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑋 ⨣ 0) = if(0 = 0, 𝑋, 0)) |
| 5 | 2, 4 | mpan2 691 | . 2 ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = if(0 = 0, 𝑋, 0)) |
| 6 | eqid 2730 | . . 3 ⊢ 0 = 0 | |
| 7 | iftrue 4502 | . . 3 ⊢ (0 = 0 → if(0 = 0, 𝑋, 0) = 𝑋) | |
| 8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝑋 ∈ {-1, 0, 1} → if(0 = 0, 𝑋, 0) = 𝑋) |
| 9 | 5, 8 | eqtrd 2765 | 1 ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4496 {cpr 4599 {ctp 4601 〈cop 4603 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 0cc0 11086 1c1 11087 -cneg 11424 ndxcnx 17169 Basecbs 17185 +gcplusg 17226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-mulcl 11148 ax-i2m1 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 |
| This theorem is referenced by: signstfveq0 34576 |
| Copyright terms: Public domain | W3C validator |