| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signswrid | Structured version Visualization version GIF version | ||
| Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsw.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| Ref | Expression |
|---|---|
| signswrid | ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11128 | . . . 4 ⊢ 0 ∈ V | |
| 2 | 1 | tpid2 4724 | . . 3 ⊢ 0 ∈ {-1, 0, 1} |
| 3 | signsw.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 4 | 3 | signspval 34539 | . . 3 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑋 ⨣ 0) = if(0 = 0, 𝑋, 0)) |
| 5 | 2, 4 | mpan2 691 | . 2 ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = if(0 = 0, 𝑋, 0)) |
| 6 | eqid 2729 | . . 3 ⊢ 0 = 0 | |
| 7 | iftrue 4484 | . . 3 ⊢ (0 = 0 → if(0 = 0, 𝑋, 0) = 𝑋) | |
| 8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝑋 ∈ {-1, 0, 1} → if(0 = 0, 𝑋, 0) = 𝑋) |
| 9 | 5, 8 | eqtrd 2764 | 1 ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4478 {cpr 4581 {ctp 4583 〈cop 4585 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 0cc0 11028 1c1 11029 -cneg 11367 ndxcnx 17123 Basecbs 17139 +gcplusg 17180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 |
| This theorem is referenced by: signstfveq0 34564 |
| Copyright terms: Public domain | W3C validator |