Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswrid Structured version   Visualization version   GIF version

Theorem signswrid 34563
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswrid (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = 𝑋)
Distinct variable group:   𝑎,𝑏,𝑋
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswrid
StepHypRef Expression
1 c0ex 11101 . . . 4 0 ∈ V
21tpid2 4718 . . 3 0 ∈ {-1, 0, 1}
3 signsw.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
43signspval 34557 . . 3 ((𝑋 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑋 0) = if(0 = 0, 𝑋, 0))
52, 4mpan2 691 . 2 (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = if(0 = 0, 𝑋, 0))
6 eqid 2731 . . 3 0 = 0
7 iftrue 4476 . . 3 (0 = 0 → if(0 = 0, 𝑋, 0) = 𝑋)
86, 7mp1i 13 . 2 (𝑋 ∈ {-1, 0, 1} → if(0 = 0, 𝑋, 0) = 𝑋)
95, 8eqtrd 2766 1 (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ifcif 4470  {cpr 4573  {ctp 4575  cop 4577  cfv 6476  (class class class)co 7341  cmpo 7343  0cc0 11001  1c1 11002  -cneg 11340  ndxcnx 17099  Basecbs 17115  +gcplusg 17156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-mulcl 11063  ax-i2m1 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346
This theorem is referenced by:  signstfveq0  34582
  Copyright terms: Public domain W3C validator