| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signswrid | Structured version Visualization version GIF version | ||
| Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsw.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| Ref | Expression |
|---|---|
| signswrid | ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11101 | . . . 4 ⊢ 0 ∈ V | |
| 2 | 1 | tpid2 4718 | . . 3 ⊢ 0 ∈ {-1, 0, 1} |
| 3 | signsw.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 4 | 3 | signspval 34557 | . . 3 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑋 ⨣ 0) = if(0 = 0, 𝑋, 0)) |
| 5 | 2, 4 | mpan2 691 | . 2 ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = if(0 = 0, 𝑋, 0)) |
| 6 | eqid 2731 | . . 3 ⊢ 0 = 0 | |
| 7 | iftrue 4476 | . . 3 ⊢ (0 = 0 → if(0 = 0, 𝑋, 0) = 𝑋) | |
| 8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝑋 ∈ {-1, 0, 1} → if(0 = 0, 𝑋, 0) = 𝑋) |
| 9 | 5, 8 | eqtrd 2766 | 1 ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ifcif 4470 {cpr 4573 {ctp 4575 〈cop 4577 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 0cc0 11001 1c1 11002 -cneg 11340 ndxcnx 17099 Basecbs 17115 +gcplusg 17156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-mulcl 11063 ax-i2m1 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 |
| This theorem is referenced by: signstfveq0 34582 |
| Copyright terms: Public domain | W3C validator |