Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswrid Structured version   Visualization version   GIF version

Theorem signswrid 33864
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsw.p ⨣ = (π‘Ž ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, π‘Ž, 𝑏))
signsw.w π‘Š = {⟨(Baseβ€˜ndx), {-1, 0, 1}⟩, ⟨(+gβ€˜ndx), ⨣ ⟩}
Assertion
Ref Expression
signswrid (𝑋 ∈ {-1, 0, 1} β†’ (𝑋 ⨣ 0) = 𝑋)
Distinct variable group:   π‘Ž,𝑏,𝑋
Allowed substitution hints:   ⨣ (π‘Ž,𝑏)   π‘Š(π‘Ž,𝑏)

Proof of Theorem signswrid
StepHypRef Expression
1 c0ex 11213 . . . 4 0 ∈ V
21tpid2 4775 . . 3 0 ∈ {-1, 0, 1}
3 signsw.p . . . 4 ⨣ = (π‘Ž ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, π‘Ž, 𝑏))
43signspval 33858 . . 3 ((𝑋 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) β†’ (𝑋 ⨣ 0) = if(0 = 0, 𝑋, 0))
52, 4mpan2 688 . 2 (𝑋 ∈ {-1, 0, 1} β†’ (𝑋 ⨣ 0) = if(0 = 0, 𝑋, 0))
6 eqid 2731 . . 3 0 = 0
7 iftrue 4535 . . 3 (0 = 0 β†’ if(0 = 0, 𝑋, 0) = 𝑋)
86, 7mp1i 13 . 2 (𝑋 ∈ {-1, 0, 1} β†’ if(0 = 0, 𝑋, 0) = 𝑋)
95, 8eqtrd 2771 1 (𝑋 ∈ {-1, 0, 1} β†’ (𝑋 ⨣ 0) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  ifcif 4529  {cpr 4631  {ctp 4633  βŸ¨cop 4635  β€˜cfv 6544  (class class class)co 7412   ∈ cmpo 7414  0cc0 11113  1c1 11114  -cneg 11450  ndxcnx 17131  Basecbs 17149  +gcplusg 17202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-mulcl 11175  ax-i2m1 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417
This theorem is referenced by:  signstfveq0  33883
  Copyright terms: Public domain W3C validator