![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signswrid | Structured version Visualization version GIF version |
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
Ref | Expression |
---|---|
signsw.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsw.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
Ref | Expression |
---|---|
signswrid | β’ (π β {-1, 0, 1} β (π ⨣ 0) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11213 | . . . 4 β’ 0 β V | |
2 | 1 | tpid2 4775 | . . 3 β’ 0 β {-1, 0, 1} |
3 | signsw.p | . . . 4 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
4 | 3 | signspval 33858 | . . 3 β’ ((π β {-1, 0, 1} β§ 0 β {-1, 0, 1}) β (π ⨣ 0) = if(0 = 0, π, 0)) |
5 | 2, 4 | mpan2 688 | . 2 β’ (π β {-1, 0, 1} β (π ⨣ 0) = if(0 = 0, π, 0)) |
6 | eqid 2731 | . . 3 β’ 0 = 0 | |
7 | iftrue 4535 | . . 3 β’ (0 = 0 β if(0 = 0, π, 0) = π) | |
8 | 6, 7 | mp1i 13 | . 2 β’ (π β {-1, 0, 1} β if(0 = 0, π, 0) = π) |
9 | 5, 8 | eqtrd 2771 | 1 β’ (π β {-1, 0, 1} β (π ⨣ 0) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 ifcif 4529 {cpr 4631 {ctp 4633 β¨cop 4635 βcfv 6544 (class class class)co 7412 β cmpo 7414 0cc0 11113 1c1 11114 -cneg 11450 ndxcnx 17131 Basecbs 17149 +gcplusg 17202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-mulcl 11175 ax-i2m1 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 |
This theorem is referenced by: signstfveq0 33883 |
Copyright terms: Public domain | W3C validator |