Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswrid Structured version   Visualization version   GIF version

Theorem signswrid 34557
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswrid (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = 𝑋)
Distinct variable group:   𝑎,𝑏,𝑋
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswrid
StepHypRef Expression
1 c0ex 11186 . . . 4 0 ∈ V
21tpid2 4742 . . 3 0 ∈ {-1, 0, 1}
3 signsw.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
43signspval 34551 . . 3 ((𝑋 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑋 0) = if(0 = 0, 𝑋, 0))
52, 4mpan2 691 . 2 (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = if(0 = 0, 𝑋, 0))
6 eqid 2730 . . 3 0 = 0
7 iftrue 4502 . . 3 (0 = 0 → if(0 = 0, 𝑋, 0) = 𝑋)
86, 7mp1i 13 . 2 (𝑋 ∈ {-1, 0, 1} → if(0 = 0, 𝑋, 0) = 𝑋)
95, 8eqtrd 2765 1 (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ifcif 4496  {cpr 4599  {ctp 4601  cop 4603  cfv 6519  (class class class)co 7394  cmpo 7396  0cc0 11086  1c1 11087  -cneg 11424  ndxcnx 17169  Basecbs 17185  +gcplusg 17226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-mulcl 11148  ax-i2m1 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399
This theorem is referenced by:  signstfveq0  34576
  Copyright terms: Public domain W3C validator