| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signswrid | Structured version Visualization version GIF version | ||
| Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsw.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| Ref | Expression |
|---|---|
| signswrid | ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11227 | . . . 4 ⊢ 0 ∈ V | |
| 2 | 1 | tpid2 4746 | . . 3 ⊢ 0 ∈ {-1, 0, 1} |
| 3 | signsw.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 4 | 3 | signspval 34530 | . . 3 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑋 ⨣ 0) = if(0 = 0, 𝑋, 0)) |
| 5 | 2, 4 | mpan2 691 | . 2 ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = if(0 = 0, 𝑋, 0)) |
| 6 | eqid 2735 | . . 3 ⊢ 0 = 0 | |
| 7 | iftrue 4506 | . . 3 ⊢ (0 = 0 → if(0 = 0, 𝑋, 0) = 𝑋) | |
| 8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝑋 ∈ {-1, 0, 1} → if(0 = 0, 𝑋, 0) = 𝑋) |
| 9 | 5, 8 | eqtrd 2770 | 1 ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ifcif 4500 {cpr 4603 {ctp 4605 〈cop 4607 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 0cc0 11127 1c1 11128 -cneg 11465 ndxcnx 17210 Basecbs 17226 +gcplusg 17269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-mulcl 11189 ax-i2m1 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 |
| This theorem is referenced by: signstfveq0 34555 |
| Copyright terms: Public domain | W3C validator |