Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswrid Structured version   Visualization version   GIF version

Theorem signswrid 34536
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswrid (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = 𝑋)
Distinct variable group:   𝑎,𝑏,𝑋
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswrid
StepHypRef Expression
1 c0ex 11227 . . . 4 0 ∈ V
21tpid2 4746 . . 3 0 ∈ {-1, 0, 1}
3 signsw.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
43signspval 34530 . . 3 ((𝑋 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑋 0) = if(0 = 0, 𝑋, 0))
52, 4mpan2 691 . 2 (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = if(0 = 0, 𝑋, 0))
6 eqid 2735 . . 3 0 = 0
7 iftrue 4506 . . 3 (0 = 0 → if(0 = 0, 𝑋, 0) = 𝑋)
86, 7mp1i 13 . 2 (𝑋 ∈ {-1, 0, 1} → if(0 = 0, 𝑋, 0) = 𝑋)
95, 8eqtrd 2770 1 (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  ifcif 4500  {cpr 4603  {ctp 4605  cop 4607  cfv 6530  (class class class)co 7403  cmpo 7405  0cc0 11127  1c1 11128  -cneg 11465  ndxcnx 17210  Basecbs 17226  +gcplusg 17269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-mulcl 11189  ax-i2m1 11195
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408
This theorem is referenced by:  signstfveq0  34555
  Copyright terms: Public domain W3C validator