Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswrid Structured version   Visualization version   GIF version

Theorem signswrid 34532
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswrid (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = 𝑋)
Distinct variable group:   𝑎,𝑏,𝑋
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswrid
StepHypRef Expression
1 c0ex 11237 . . . 4 0 ∈ V
21tpid2 4750 . . 3 0 ∈ {-1, 0, 1}
3 signsw.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
43signspval 34526 . . 3 ((𝑋 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑋 0) = if(0 = 0, 𝑋, 0))
52, 4mpan2 691 . 2 (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = if(0 = 0, 𝑋, 0))
6 eqid 2734 . . 3 0 = 0
7 iftrue 4511 . . 3 (0 = 0 → if(0 = 0, 𝑋, 0) = 𝑋)
86, 7mp1i 13 . 2 (𝑋 ∈ {-1, 0, 1} → if(0 = 0, 𝑋, 0) = 𝑋)
95, 8eqtrd 2769 1 (𝑋 ∈ {-1, 0, 1} → (𝑋 0) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  ifcif 4505  {cpr 4608  {ctp 4610  cop 4612  cfv 6541  (class class class)co 7413  cmpo 7415  0cc0 11137  1c1 11138  -cneg 11475  ndxcnx 17212  Basecbs 17229  +gcplusg 17273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-mulcl 11199  ax-i2m1 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418
This theorem is referenced by:  signstfveq0  34551
  Copyright terms: Public domain W3C validator