![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mdetpmtr2 | Structured version Visualization version GIF version |
Description: The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
Ref | Expression |
---|---|
mdetpmtr.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdetpmtr.b | ⊢ 𝐵 = (Base‘𝐴) |
mdetpmtr.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetpmtr.g | ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) |
mdetpmtr.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
mdetpmtr.z | ⊢ 𝑍 = (ℤRHom‘𝑅) |
mdetpmtr.t | ⊢ · = (.r‘𝑅) |
mdetpmtr2.e | ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀(𝑃‘𝑗))) |
Ref | Expression |
---|---|
mdetpmtr2 | ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 757 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → 𝑅 ∈ CRing) | |
2 | simplr 759 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → 𝑁 ∈ Fin) | |
3 | mdetpmtr.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | mdetpmtr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
5 | 3, 4 | mattposcl 20664 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) |
6 | 5 | ad2antrl 718 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → tpos 𝑀 ∈ 𝐵) |
7 | simprr 763 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → 𝑃 ∈ 𝐺) | |
8 | mdetpmtr.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
9 | mdetpmtr.g | . . . 4 ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) | |
10 | mdetpmtr.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
11 | mdetpmtr.z | . . . 4 ⊢ 𝑍 = (ℤRHom‘𝑅) | |
12 | mdetpmtr.t | . . . 4 ⊢ · = (.r‘𝑅) | |
13 | mdetpmtr2.e | . . . . . 6 ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀(𝑃‘𝑗))) | |
14 | ovtpos 7649 | . . . . . . . . 9 ⊢ ((𝑃‘𝑗)tpos 𝑀𝑖) = (𝑖𝑀(𝑃‘𝑗)) | |
15 | 14 | eqcomi 2787 | . . . . . . . 8 ⊢ (𝑖𝑀(𝑃‘𝑗)) = ((𝑃‘𝑗)tpos 𝑀𝑖) |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀(𝑃‘𝑗)) = ((𝑃‘𝑗)tpos 𝑀𝑖)) |
17 | 16 | mpt2eq3ia 6997 | . . . . . 6 ⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀(𝑃‘𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑗)tpos 𝑀𝑖)) |
18 | 13, 17 | eqtri 2802 | . . . . 5 ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑗)tpos 𝑀𝑖)) |
19 | 18 | tposmpt2 7671 | . . . 4 ⊢ tpos 𝐸 = (𝑗 ∈ 𝑁, 𝑖 ∈ 𝑁 ↦ ((𝑃‘𝑗)tpos 𝑀𝑖)) |
20 | 3, 4, 8, 9, 10, 11, 12, 19 | mdetpmtr1 30487 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (tpos 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘tpos 𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘tpos 𝐸))) |
21 | 1, 2, 6, 7, 20 | syl22anc 829 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘tpos 𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘tpos 𝐸))) |
22 | 8, 3, 4 | mdettpos 20822 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐷‘tpos 𝑀) = (𝐷‘𝑀)) |
23 | 22 | ad2ant2r 737 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘tpos 𝑀) = (𝐷‘𝑀)) |
24 | eqid 2778 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
25 | simp2 1128 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
26 | 7 | 3ad2ant1 1124 | . . . . . . . 8 ⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ 𝐺) |
27 | simp3 1129 | . . . . . . . 8 ⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
28 | eqid 2778 | . . . . . . . . 9 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
29 | 28, 9 | symgfv 18190 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝐺 ∧ 𝑗 ∈ 𝑁) → (𝑃‘𝑗) ∈ 𝑁) |
30 | 26, 27, 29 | syl2anc 579 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑃‘𝑗) ∈ 𝑁) |
31 | simp1rl 1276 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ 𝐵) | |
32 | 3, 24, 4, 25, 30, 31 | matecld 20636 | . . . . . 6 ⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀(𝑃‘𝑗)) ∈ (Base‘𝑅)) |
33 | 3, 24, 4, 2, 1, 32 | matbas2d 20633 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀(𝑃‘𝑗))) ∈ 𝐵) |
34 | 13, 33 | syl5eqel 2863 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → 𝐸 ∈ 𝐵) |
35 | 8, 3, 4 | mdettpos 20822 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝐵) → (𝐷‘tpos 𝐸) = (𝐷‘𝐸)) |
36 | 1, 34, 35 | syl2anc 579 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘tpos 𝐸) = (𝐷‘𝐸)) |
37 | 36 | oveq2d 6938 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘tpos 𝐸)) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) |
38 | 21, 23, 37 | 3eqtr3d 2822 | 1 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∘ ccom 5359 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 tpos ctpos 7633 Fincfn 8241 Basecbs 16255 .rcmulr 16339 SymGrpcsymg 18180 pmSgncpsgn 18292 CRingccrg 18935 ℤRHomczrh 20244 Mat cmat 20617 maDet cmdat 20795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-xor 1583 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-ot 4407 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-sup 8636 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-xnn0 11715 df-z 11729 df-dec 11846 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-word 13600 df-lsw 13653 df-concat 13661 df-s1 13686 df-substr 13731 df-pfx 13780 df-splice 13887 df-reverse 13905 df-s2 13999 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-0g 16488 df-gsum 16489 df-prds 16494 df-pws 16496 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-submnd 17722 df-grp 17812 df-minusg 17813 df-mulg 17928 df-subg 17975 df-ghm 18042 df-gim 18085 df-cntz 18133 df-oppg 18159 df-symg 18181 df-pmtr 18245 df-psgn 18294 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-ring 18936 df-cring 18937 df-oppr 19010 df-dvdsr 19028 df-unit 19029 df-invr 19059 df-dvr 19070 df-rnghom 19104 df-drng 19141 df-subrg 19170 df-sra 19569 df-rgmod 19570 df-cnfld 20143 df-zring 20215 df-zrh 20248 df-dsmm 20475 df-frlm 20490 df-mat 20618 df-mdet 20796 |
This theorem is referenced by: mdetpmtr12 30489 |
Copyright terms: Public domain | W3C validator |