Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemfnid Structured version   Visualization version   GIF version

Theorem cdlemfnid 40583
Description: cdlemf 40582 with additional constraint of non-identity. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemfnid.b 𝐵 = (Base‘𝐾)
cdlemfnid.l = (le‘𝐾)
cdlemfnid.a 𝐴 = (Atoms‘𝐾)
cdlemfnid.h 𝐻 = (LHyp‘𝐾)
cdlemfnid.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemfnid.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemfnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑈𝑓 ≠ ( I ↾ 𝐵)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   ,𝑓   𝑇,𝑓   𝑈,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑓)

Proof of Theorem cdlemfnid
StepHypRef Expression
1 cdlemfnid.l . . 3 = (le‘𝐾)
2 cdlemfnid.a . . 3 𝐴 = (Atoms‘𝐾)
3 cdlemfnid.h . . 3 𝐻 = (LHyp‘𝐾)
4 cdlemfnid.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 cdlemfnid.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
61, 2, 3, 4, 5cdlemf 40582 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 (𝑅𝑓) = 𝑈)
7 simp3 1138 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ 𝑓𝑇 ∧ (𝑅𝑓) = 𝑈) → (𝑅𝑓) = 𝑈)
8 simp1rl 1239 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ 𝑓𝑇 ∧ (𝑅𝑓) = 𝑈) → 𝑈𝐴)
97, 8eqeltrd 2834 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ 𝑓𝑇 ∧ (𝑅𝑓) = 𝑈) → (𝑅𝑓) ∈ 𝐴)
10 simp1l 1198 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ 𝑓𝑇 ∧ (𝑅𝑓) = 𝑈) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ 𝑓𝑇 ∧ (𝑅𝑓) = 𝑈) → 𝑓𝑇)
12 cdlemfnid.b . . . . . . . 8 𝐵 = (Base‘𝐾)
1312, 2, 3, 4, 5trlnidatb 40196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑓 ≠ ( I ↾ 𝐵) ↔ (𝑅𝑓) ∈ 𝐴))
1410, 11, 13syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ 𝑓𝑇 ∧ (𝑅𝑓) = 𝑈) → (𝑓 ≠ ( I ↾ 𝐵) ↔ (𝑅𝑓) ∈ 𝐴))
159, 14mpbird 257 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ 𝑓𝑇 ∧ (𝑅𝑓) = 𝑈) → 𝑓 ≠ ( I ↾ 𝐵))
167, 15jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ 𝑓𝑇 ∧ (𝑅𝑓) = 𝑈) → ((𝑅𝑓) = 𝑈𝑓 ≠ ( I ↾ 𝐵)))
17163expia 1121 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) ∧ 𝑓𝑇) → ((𝑅𝑓) = 𝑈 → ((𝑅𝑓) = 𝑈𝑓 ≠ ( I ↾ 𝐵))))
1817reximdva 3153 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → (∃𝑓𝑇 (𝑅𝑓) = 𝑈 → ∃𝑓𝑇 ((𝑅𝑓) = 𝑈𝑓 ≠ ( I ↾ 𝐵))))
196, 18mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊)) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑈𝑓 ≠ ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119   I cid 5547  cres 5656  cfv 6531  Basecbs 17228  lecple 17278  Atomscatm 39281  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  trLctrl 40177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-undef 8272  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178
This theorem is referenced by:  cdlemftr3  40584  cdlemj3  40842
  Copyright terms: Public domain W3C validator