Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemfnid | Structured version Visualization version GIF version |
Description: cdlemf 38831 with additional constraint of non-identity. (Contributed by NM, 20-Jun-2013.) |
Ref | Expression |
---|---|
cdlemfnid.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemfnid.l | ⊢ ≤ = (le‘𝐾) |
cdlemfnid.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemfnid.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemfnid.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemfnid.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemfnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemfnid.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemfnid.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | cdlemfnid.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdlemfnid.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | cdlemfnid.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | cdlemf 38831 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 (𝑅‘𝑓) = 𝑈) |
7 | simp3 1137 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑅‘𝑓) = 𝑈) | |
8 | simp1rl 1237 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑈 ∈ 𝐴) | |
9 | 7, 8 | eqeltrd 2837 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑅‘𝑓) ∈ 𝐴) |
10 | simp1l 1196 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | simp2 1136 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑓 ∈ 𝑇) | |
12 | cdlemfnid.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
13 | 12, 2, 3, 4, 5 | trlnidatb 38445 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (𝑓 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝑓) ∈ 𝐴)) |
14 | 10, 11, 13 | syl2anc 584 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑓 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝑓) ∈ 𝐴)) |
15 | 9, 14 | mpbird 256 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑓 ≠ ( I ↾ 𝐵)) |
16 | 7, 15 | jca 512 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
17 | 16 | 3expia 1120 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → ((𝑅‘𝑓) = 𝑈 → ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵)))) |
18 | 17 | reximdva 3161 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → (∃𝑓 ∈ 𝑇 (𝑅‘𝑓) = 𝑈 → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵)))) |
19 | 6, 18 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∃wrex 3070 class class class wbr 5092 I cid 5517 ↾ cres 5622 ‘cfv 6479 Basecbs 17009 lecple 17066 Atomscatm 37530 HLchlt 37617 LHypclh 38252 LTrncltrn 38369 trLctrl 38426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-riotaBAD 37220 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-undef 8159 df-map 8688 df-proset 18110 df-poset 18128 df-plt 18145 df-lub 18161 df-glb 18162 df-join 18163 df-meet 18164 df-p0 18240 df-p1 18241 df-lat 18247 df-clat 18314 df-oposet 37443 df-ol 37445 df-oml 37446 df-covers 37533 df-ats 37534 df-atl 37565 df-cvlat 37589 df-hlat 37618 df-llines 37766 df-lplanes 37767 df-lvols 37768 df-lines 37769 df-psubsp 37771 df-pmap 37772 df-padd 38064 df-lhyp 38256 df-laut 38257 df-ldil 38372 df-ltrn 38373 df-trl 38427 |
This theorem is referenced by: cdlemftr3 38833 cdlemj3 39091 |
Copyright terms: Public domain | W3C validator |