![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemfnid | Structured version Visualization version GIF version |
Description: cdlemf 40166 with additional constraint of non-identity. (Contributed by NM, 20-Jun-2013.) |
Ref | Expression |
---|---|
cdlemfnid.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemfnid.l | ⊢ ≤ = (le‘𝐾) |
cdlemfnid.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemfnid.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemfnid.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemfnid.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemfnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemfnid.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemfnid.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | cdlemfnid.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdlemfnid.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | cdlemfnid.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | cdlemf 40166 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 (𝑅‘𝑓) = 𝑈) |
7 | simp3 1135 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑅‘𝑓) = 𝑈) | |
8 | simp1rl 1235 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑈 ∈ 𝐴) | |
9 | 7, 8 | eqeltrd 2825 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑅‘𝑓) ∈ 𝐴) |
10 | simp1l 1194 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | simp2 1134 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑓 ∈ 𝑇) | |
12 | cdlemfnid.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
13 | 12, 2, 3, 4, 5 | trlnidatb 39780 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (𝑓 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝑓) ∈ 𝐴)) |
14 | 10, 11, 13 | syl2anc 582 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑓 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝑓) ∈ 𝐴)) |
15 | 9, 14 | mpbird 256 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑓 ≠ ( I ↾ 𝐵)) |
16 | 7, 15 | jca 510 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
17 | 16 | 3expia 1118 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → ((𝑅‘𝑓) = 𝑈 → ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵)))) |
18 | 17 | reximdva 3157 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → (∃𝑓 ∈ 𝑇 (𝑅‘𝑓) = 𝑈 → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵)))) |
19 | 6, 18 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 class class class wbr 5149 I cid 5575 ↾ cres 5680 ‘cfv 6549 Basecbs 17183 lecple 17243 Atomscatm 38865 HLchlt 38952 LHypclh 39587 LTrncltrn 39704 trLctrl 39761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-riotaBAD 38555 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-undef 8279 df-map 8847 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-oposet 38778 df-ol 38780 df-oml 38781 df-covers 38868 df-ats 38869 df-atl 38900 df-cvlat 38924 df-hlat 38953 df-llines 39101 df-lplanes 39102 df-lvols 39103 df-lines 39104 df-psubsp 39106 df-pmap 39107 df-padd 39399 df-lhyp 39591 df-laut 39592 df-ldil 39707 df-ltrn 39708 df-trl 39762 |
This theorem is referenced by: cdlemftr3 40168 cdlemj3 40426 |
Copyright terms: Public domain | W3C validator |