| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemfnid | Structured version Visualization version GIF version | ||
| Description: cdlemf 40735 with additional constraint of non-identity. (Contributed by NM, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| cdlemfnid.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemfnid.l | ⊢ ≤ = (le‘𝐾) |
| cdlemfnid.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemfnid.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemfnid.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemfnid.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdlemfnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemfnid.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdlemfnid.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | cdlemfnid.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | cdlemfnid.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | cdlemfnid.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | cdlemf 40735 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 (𝑅‘𝑓) = 𝑈) |
| 7 | simp3 1138 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑅‘𝑓) = 𝑈) | |
| 8 | simp1rl 1239 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑈 ∈ 𝐴) | |
| 9 | 7, 8 | eqeltrd 2833 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑅‘𝑓) ∈ 𝐴) |
| 10 | simp1l 1198 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | simp2 1137 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑓 ∈ 𝑇) | |
| 12 | cdlemfnid.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
| 13 | 12, 2, 3, 4, 5 | trlnidatb 40349 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (𝑓 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝑓) ∈ 𝐴)) |
| 14 | 10, 11, 13 | syl2anc 584 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑓 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝑓) ∈ 𝐴)) |
| 15 | 9, 14 | mpbird 257 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑓 ≠ ( I ↾ 𝐵)) |
| 16 | 7, 15 | jca 511 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
| 17 | 16 | 3expia 1121 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → ((𝑅‘𝑓) = 𝑈 → ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵)))) |
| 18 | 17 | reximdva 3146 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → (∃𝑓 ∈ 𝑇 (𝑅‘𝑓) = 𝑈 → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵)))) |
| 19 | 6, 18 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 class class class wbr 5095 I cid 5515 ↾ cres 5623 ‘cfv 6489 Basecbs 17127 lecple 17175 Atomscatm 39435 HLchlt 39522 LHypclh 40156 LTrncltrn 40273 trLctrl 40330 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-riotaBAD 39125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-undef 8212 df-map 8761 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-p1 18338 df-lat 18346 df-clat 18413 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 df-llines 39670 df-lplanes 39671 df-lvols 39672 df-lines 39673 df-psubsp 39675 df-pmap 39676 df-padd 39968 df-lhyp 40160 df-laut 40161 df-ldil 40276 df-ltrn 40277 df-trl 40331 |
| This theorem is referenced by: cdlemftr3 40737 cdlemj3 40995 |
| Copyright terms: Public domain | W3C validator |