| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 13945 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (1...(⌊‘𝑥)) ∈ Fin) |
| 2 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → 𝑥 ∈ ℝ+) |
| 3 | | elfznn 13521 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
| 4 | 3 | nnrpd 13000 |
. . . . . . . . 9
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℝ+) |
| 5 | | rpdivcl 12985 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (𝑥 / 𝑛) ∈
ℝ+) |
| 6 | 2, 4, 5 | syl2an 596 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈
ℝ+) |
| 7 | 6 | relogcld 26539 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ) |
| 8 | | simpll 766 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈
ℕ0) |
| 9 | 7, 8 | reexpcld 14135 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ) |
| 10 | 1, 9 | fsumrecl 15707 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ) |
| 11 | | relogcl 26491 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
| 12 | | id 22 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℕ0) |
| 13 | | reexpcl 14050 |
. . . . . . 7
⊢
(((log‘𝑥)
∈ ℝ ∧ 𝑁
∈ ℕ0) → ((log‘𝑥)↑𝑁) ∈ ℝ) |
| 14 | 11, 12, 13 | syl2anr 597 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((log‘𝑥)↑𝑁) ∈ ℝ) |
| 15 | | faccl 14255 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (!‘𝑁) ∈
ℕ) |
| 16 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (!‘𝑁) ∈ ℕ) |
| 17 | 16 | nnred 12208 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (!‘𝑁) ∈ ℝ) |
| 18 | | fzfid 13945 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (0...𝑁) ∈ Fin) |
| 19 | 11 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (log‘𝑥) ∈ ℝ) |
| 20 | | elfznn0 13588 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 21 | | reexpcl 14050 |
. . . . . . . . . 10
⊢
(((log‘𝑥)
∈ ℝ ∧ 𝑘
∈ ℕ0) → ((log‘𝑥)↑𝑘) ∈ ℝ) |
| 22 | 19, 20, 21 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℝ) |
| 23 | 20 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 24 | 23 | faccld 14256 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
| 25 | 22, 24 | nndivred 12247 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 26 | 18, 25 | fsumrecl 15707 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 27 | 17, 26 | remulcld 11211 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℝ) |
| 28 | 14, 27 | resubcld 11613 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℝ) |
| 29 | 10, 28 | resubcld 11613 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℝ) |
| 30 | 29, 2 | rerpdivcld 13033 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℝ) |
| 31 | | rerpdivcl 12990 |
. . . 4
⊢
(((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) →
((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℝ) |
| 32 | 28, 31 | sylancom 588 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℝ) |
| 33 | | 1red 11182 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℝ) |
| 34 | 15 | nncnd 12209 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (!‘𝑁) ∈
ℂ) |
| 35 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑘 = 𝑁 ∧ 𝑥 ∈ ℝ+) → 𝑘 = 𝑁) |
| 36 | 35 | oveq2d 7406 |
. . . . . . . 8
⊢ ((𝑘 = 𝑁 ∧ 𝑥 ∈ ℝ+) →
((log‘𝑥)↑𝑘) = ((log‘𝑥)↑𝑁)) |
| 37 | 36 | oveq1d 7405 |
. . . . . . 7
⊢ ((𝑘 = 𝑁 ∧ 𝑥 ∈ ℝ+) →
(((log‘𝑥)↑𝑘) / 𝑥) = (((log‘𝑥)↑𝑁) / 𝑥)) |
| 38 | 37 | mpteq2dva 5203 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝑥 ∈ ℝ+ ↦
(((log‘𝑥)↑𝑘) / 𝑥)) = (𝑥 ∈ ℝ+ ↦
(((log‘𝑥)↑𝑁) / 𝑥))) |
| 39 | 38 | breq1d 5120 |
. . . . 5
⊢ (𝑘 = 𝑁 → ((𝑥 ∈ ℝ+ ↦
(((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟 0 ↔
(𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑𝑁) / 𝑥)) ⇝𝑟
0)) |
| 40 | 11 | recnd 11209 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℂ) |
| 41 | | id 22 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℕ0) |
| 42 | | cxpexp 26584 |
. . . . . . . . 9
⊢
(((log‘𝑥)
∈ ℂ ∧ 𝑘
∈ ℕ0) → ((log‘𝑥)↑𝑐𝑘) = ((log‘𝑥)↑𝑘)) |
| 43 | 40, 41, 42 | syl2anr 597 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((log‘𝑥)↑𝑐𝑘) = ((log‘𝑥)↑𝑘)) |
| 44 | | rpcn 12969 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
| 45 | 44 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → 𝑥 ∈ ℂ) |
| 46 | 45 | cxp1d 26622 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (𝑥↑𝑐1) = 𝑥) |
| 47 | 43, 46 | oveq12d 7408 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((log‘𝑥)↑𝑐𝑘) / (𝑥↑𝑐1)) =
(((log‘𝑥)↑𝑘) / 𝑥)) |
| 48 | 47 | mpteq2dva 5203 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑𝑐𝑘) / (𝑥↑𝑐1))) = (𝑥 ∈ ℝ+
↦ (((log‘𝑥)↑𝑘) / 𝑥))) |
| 49 | | nn0cn 12459 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 50 | | 1rp 12962 |
. . . . . . 7
⊢ 1 ∈
ℝ+ |
| 51 | | cxploglim2 26896 |
. . . . . . 7
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℝ+) → (𝑥 ∈ ℝ+ ↦
(((log‘𝑥)↑𝑐𝑘) / (𝑥↑𝑐1)))
⇝𝑟 0) |
| 52 | 49, 50, 51 | sylancl 586 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑𝑐𝑘) / (𝑥↑𝑐1)))
⇝𝑟 0) |
| 53 | 48, 52 | eqbrtrrd 5134 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟
0) |
| 54 | 39, 53 | vtoclga 3546 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑𝑁) / 𝑥)) ⇝𝑟
0) |
| 55 | | rerpdivcl 12990 |
. . . . . 6
⊢
((((log‘𝑥)↑𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ+) →
(((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ) |
| 56 | 14, 55 | sylancom 588 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ) |
| 57 | 56 | recnd 11209 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ) |
| 58 | 10 | recnd 11209 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ) |
| 59 | 14 | recnd 11209 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((log‘𝑥)↑𝑁) ∈ ℂ) |
| 60 | 34 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (!‘𝑁) ∈ ℂ) |
| 61 | 26 | recnd 11209 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 62 | 60, 61 | mulcld 11201 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ) |
| 63 | 59, 62 | subcld 11540 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ) |
| 64 | 58, 63 | subcld 11540 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℂ) |
| 65 | | rpcnne0 12977 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
| 66 | 65 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
| 67 | 66 | simpld 494 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → 𝑥 ∈ ℂ) |
| 68 | 66 | simprd 495 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → 𝑥 ≠ 0) |
| 69 | 64, 67, 68 | divcld 11965 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℂ) |
| 70 | 69 | adantrr 717 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℂ) |
| 71 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ∈ ℕ) |
| 72 | 71 | nncnd 12209 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ∈ ℂ) |
| 73 | 70, 72 | subcld 11540 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) ∈ ℂ) |
| 74 | 73 | abscld 15412 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ∈ ℝ) |
| 75 | 56 | adantrr 717 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ) |
| 76 | 75 | recnd 11209 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ) |
| 77 | 76 | abscld 15412 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥)↑𝑁) / 𝑥)) ∈ ℝ) |
| 78 | | ioorp 13393 |
. . . . . . . . . 10
⊢
(0(,)+∞) = ℝ+ |
| 79 | 78 | eqcomi 2739 |
. . . . . . . . 9
⊢
ℝ+ = (0(,)+∞) |
| 80 | | nnuz 12843 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 81 | | 1z 12570 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 82 | 81 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℤ) |
| 83 | | 1red 11182 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ) |
| 84 | | 1re 11181 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
| 85 | | 1nn0 12465 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ0 |
| 86 | 84, 85 | nn0addge1i 12497 |
. . . . . . . . . 10
⊢ 1 ≤ (1
+ 1) |
| 87 | 86 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ (1 + 1)) |
| 88 | | 0red 11184 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ ℝ) |
| 89 | 71 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(!‘𝑁) ∈
ℕ) |
| 90 | 89 | nnred 12208 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(!‘𝑁) ∈
ℝ) |
| 91 | | rpre 12967 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
| 92 | 91 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℝ) |
| 93 | | fzfid 13945 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(0...𝑁) ∈
Fin) |
| 94 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+) |
| 95 | | rpdivcl 12985 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈
ℝ+) → (𝑥 / 𝑦) ∈
ℝ+) |
| 96 | 94, 95 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑥 / 𝑦) ∈
ℝ+) |
| 97 | 96 | relogcld 26539 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(log‘(𝑥 / 𝑦)) ∈
ℝ) |
| 98 | | reexpcl 14050 |
. . . . . . . . . . . . . 14
⊢
(((log‘(𝑥 /
𝑦)) ∈ ℝ ∧
𝑘 ∈
ℕ0) → ((log‘(𝑥 / 𝑦))↑𝑘) ∈ ℝ) |
| 99 | 97, 20, 98 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) ∈ ℝ) |
| 100 | 20 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 101 | 100 | faccld 14256 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
| 102 | 99, 101 | nndivred 12247 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 103 | 93, 102 | fsumrecl 15707 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 104 | 92, 103 | remulcld 11211 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) ∈ ℝ) |
| 105 | 90, 104 | remulcld 11211 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
((!‘𝑁) ·
(𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) ∈ ℝ) |
| 106 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑁 ∈
ℕ0) |
| 107 | 97, 106 | reexpcld 14135 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℝ) |
| 108 | | nnrp 12970 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ+) |
| 109 | 108, 107 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℕ) → ((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℝ) |
| 110 | | reelprrecn 11167 |
. . . . . . . . . . . 12
⊢ ℝ
∈ {ℝ, ℂ} |
| 111 | 110 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ℝ ∈ {ℝ,
ℂ}) |
| 112 | 104 | recnd 11209 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) ∈ ℂ) |
| 113 | 107, 89 | nndivred 12247 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)) ∈ ℝ) |
| 114 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈
ℕ0) |
| 115 | | advlogexp 26571 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑁 ∈
ℕ0) → (ℝ D (𝑦 ∈ ℝ+ ↦ (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (𝑦 ∈ ℝ+ ↦
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)))) |
| 116 | 94, 114, 115 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦ (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (𝑦 ∈ ℝ+ ↦
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)))) |
| 117 | 111, 112,
113, 116, 72 | dvmptcmul 25875 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦
((!‘𝑁) ·
(𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦
((!‘𝑁) ·
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁))))) |
| 118 | 107 | recnd 11209 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℂ) |
| 119 | 72 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(!‘𝑁) ∈
ℂ) |
| 120 | 71 | nnne0d 12243 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ≠ 0) |
| 121 | 120 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(!‘𝑁) ≠
0) |
| 122 | 118, 119,
121 | divcan2d 11967 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
((!‘𝑁) ·
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁))) = ((log‘(𝑥 / 𝑦))↑𝑁)) |
| 123 | 122 | mpteq2dva 5203 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑦 ∈ ℝ+ ↦
((!‘𝑁) ·
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)))) = (𝑦 ∈ ℝ+ ↦
((log‘(𝑥 / 𝑦))↑𝑁))) |
| 124 | 117, 123 | eqtrd 2765 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦
((!‘𝑁) ·
(𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦
((log‘(𝑥 / 𝑦))↑𝑁))) |
| 125 | | oveq2 7398 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑛 → (𝑥 / 𝑦) = (𝑥 / 𝑛)) |
| 126 | 125 | fveq2d 6865 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑛 → (log‘(𝑥 / 𝑦)) = (log‘(𝑥 / 𝑛))) |
| 127 | 126 | oveq1d 7405 |
. . . . . . . . 9
⊢ (𝑦 = 𝑛 → ((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘(𝑥 / 𝑛))↑𝑁)) |
| 128 | 94 | rpxrd 13003 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ*) |
| 129 | | simp1rl 1239 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ+) |
| 130 | | simp2r 1201 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ+) |
| 131 | 129, 130 | rpdivcld 13019 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑥 / 𝑛) ∈
ℝ+) |
| 132 | 131 | relogcld 26539 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (log‘(𝑥 / 𝑛)) ∈ ℝ) |
| 133 | | simp2l 1200 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑦 ∈ ℝ+) |
| 134 | 129, 133 | rpdivcld 13019 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑥 / 𝑦) ∈
ℝ+) |
| 135 | 134 | relogcld 26539 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (log‘(𝑥 / 𝑦)) ∈ ℝ) |
| 136 | | simp1l 1198 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑁 ∈
ℕ0) |
| 137 | | log1 26501 |
. . . . . . . . . . 11
⊢
(log‘1) = 0 |
| 138 | 130 | rpcnd 13004 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℂ) |
| 139 | 138 | mullidd 11199 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (1 · 𝑛) = 𝑛) |
| 140 | | simp33 1212 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ≤ 𝑥) |
| 141 | 139, 140 | eqbrtrd 5132 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (1 · 𝑛) ≤ 𝑥) |
| 142 | | 1red 11182 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 1 ∈ ℝ) |
| 143 | 129 | rpred 13002 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
| 144 | 142, 143,
130 | lemuldivd 13051 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛))) |
| 145 | 141, 144 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 1 ≤ (𝑥 / 𝑛)) |
| 146 | | logleb 26519 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℝ+ ∧ (𝑥 / 𝑛) ∈ ℝ+) → (1 ≤
(𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛)))) |
| 147 | 50, 131, 146 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛)))) |
| 148 | 145, 147 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (log‘1) ≤
(log‘(𝑥 / 𝑛))) |
| 149 | 137, 148 | eqbrtrrid 5146 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 0 ≤ (log‘(𝑥 / 𝑛))) |
| 150 | | simp32 1211 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑦 ≤ 𝑛) |
| 151 | 133, 130,
129 | lediv2d 13026 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑦 ≤ 𝑛 ↔ (𝑥 / 𝑛) ≤ (𝑥 / 𝑦))) |
| 152 | 150, 151 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑥 / 𝑛) ≤ (𝑥 / 𝑦)) |
| 153 | 131, 134 | logled 26543 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((𝑥 / 𝑛) ≤ (𝑥 / 𝑦) ↔ (log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦)))) |
| 154 | 152, 153 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦))) |
| 155 | | leexp1a 14147 |
. . . . . . . . . 10
⊢
((((log‘(𝑥 /
𝑛)) ∈ ℝ ∧
(log‘(𝑥 / 𝑦)) ∈ ℝ ∧ 𝑁 ∈ ℕ0)
∧ (0 ≤ (log‘(𝑥
/ 𝑛)) ∧
(log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦)))) → ((log‘(𝑥 / 𝑛))↑𝑁) ≤ ((log‘(𝑥 / 𝑦))↑𝑁)) |
| 156 | 132, 135,
136, 149, 154, 155 | syl32anc 1380 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((log‘(𝑥 / 𝑛))↑𝑁) ≤ ((log‘(𝑥 / 𝑦))↑𝑁)) |
| 157 | | eqid 2730 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) |
| 158 | 96 | 3ad2antr1 1189 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (𝑥 / 𝑦) ∈
ℝ+) |
| 159 | 158 | relogcld 26539 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (log‘(𝑥 / 𝑦)) ∈ ℝ) |
| 160 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑁 ∈
ℕ0) |
| 161 | | rpcn 12969 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℂ) |
| 162 | 161 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℂ) |
| 163 | 162 | 3ad2antr1 1189 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑦 ∈ ℂ) |
| 164 | 163 | mullidd 11199 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (1 · 𝑦) = 𝑦) |
| 165 | | simpr3 1197 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑦 ≤ 𝑥) |
| 166 | 164, 165 | eqbrtrd 5132 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (1 · 𝑦) ≤ 𝑥) |
| 167 | | 1red 11182 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 1 ∈ ℝ) |
| 168 | 94 | rpred 13002 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
| 169 | 168 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
| 170 | | simpr1 1195 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑦 ∈ ℝ+) |
| 171 | 167, 169,
170 | lemuldivd 13051 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → ((1 · 𝑦) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑦))) |
| 172 | 166, 171 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 1 ≤ (𝑥 / 𝑦)) |
| 173 | | logleb 26519 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℝ+ ∧ (𝑥 / 𝑦) ∈ ℝ+) → (1 ≤
(𝑥 / 𝑦) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑦)))) |
| 174 | 50, 158, 173 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (1 ≤ (𝑥 / 𝑦) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑦)))) |
| 175 | 172, 174 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (log‘1) ≤
(log‘(𝑥 / 𝑦))) |
| 176 | 137, 175 | eqbrtrrid 5146 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 0 ≤ (log‘(𝑥 / 𝑦))) |
| 177 | 159, 160,
176 | expge0d 14136 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑦))↑𝑁)) |
| 178 | 50 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈
ℝ+) |
| 179 | | 1le1 11813 |
. . . . . . . . . 10
⊢ 1 ≤
1 |
| 180 | 179 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 1) |
| 181 | | simprr 772 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥) |
| 182 | 168 | leidd 11751 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≤ 𝑥) |
| 183 | 79, 80, 82, 83, 87, 88, 105, 107, 109, 124, 127, 128, 156, 157, 177, 178, 94, 180, 181, 182 | dvfsumlem4 25943 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) ≤ ⦋1 /
𝑦⦌((log‘(𝑥 / 𝑦))↑𝑁)) |
| 184 | | fzfid 13945 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin) |
| 185 | 94, 4, 5 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈
ℝ+) |
| 186 | 185 | relogcld 26539 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ) |
| 187 | | simpll 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈
ℕ0) |
| 188 | 186, 187 | reexpcld 14135 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ) |
| 189 | 184, 188 | fsumrecl 15707 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ) |
| 190 | 189 | recnd 11209 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ) |
| 191 | 94 | rpcnd 13004 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ) |
| 192 | 72, 191 | mulcld 11201 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((!‘𝑁) · 𝑥) ∈ ℂ) |
| 193 | 11 | ad2antrl 728 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ) |
| 194 | 193 | recnd 11209 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ) |
| 195 | 194, 114 | expcld 14118 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥)↑𝑁) ∈ ℂ) |
| 196 | | fzfid 13945 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (0...𝑁) ∈ Fin) |
| 197 | 193, 20, 21 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℝ) |
| 198 | 20 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 199 | 198 | faccld 14256 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
| 200 | 197, 199 | nndivred 12247 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 201 | 200 | recnd 11209 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 202 | 196, 201 | fsumcl 15706 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 203 | 72, 202 | mulcld 11201 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ) |
| 204 | 195, 203 | subcld 11540 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ) |
| 205 | 190, 192,
204 | sub32d 11572 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥))) |
| 206 | | eqidd 2731 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))) |
| 207 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
| 208 | 207 | fveq2d 6865 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (⌊‘𝑦) = (⌊‘𝑥)) |
| 209 | 208 | oveq2d 7406 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (1...(⌊‘𝑦)) = (1...(⌊‘𝑥))) |
| 210 | 209 | sumeq1d 15673 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁)) |
| 211 | | oveq2 7398 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → (𝑥 / 𝑦) = (𝑥 / 𝑥)) |
| 212 | 65 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
| 213 | | divid 11875 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥 / 𝑥) = 1) |
| 214 | 212, 213 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 / 𝑥) = 1) |
| 215 | 211, 214 | sylan9eqr 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑥 / 𝑦) = 1) |
| 216 | 215 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 / 𝑦) = 1) |
| 217 | 216 | fveq2d 6865 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = (log‘1)) |
| 218 | 217, 137 | eqtrdi 2781 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = 0) |
| 219 | 218 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) = (0↑𝑘)) |
| 220 | 219 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = ((0↑𝑘) / (!‘𝑘))) |
| 221 | 220 | sumeq2dv 15675 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((0↑𝑘) / (!‘𝑘))) |
| 222 | | nn0uz 12842 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
ℕ0 = (ℤ≥‘0) |
| 223 | 114, 222 | eleqtrdi 2839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈
(ℤ≥‘0)) |
| 224 | | eluzfz1 13499 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑁)) |
| 225 | 223, 224 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ (0...𝑁)) |
| 226 | 225 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → 0 ∈ (0...𝑁)) |
| 227 | 226 | snssd 4776 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → {0} ⊆ (0...𝑁)) |
| 228 | | elsni 4609 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ {0} → 𝑘 = 0) |
| 229 | 228 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → 𝑘 = 0) |
| 230 | | oveq2 7398 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 0 → (0↑𝑘) = (0↑0)) |
| 231 | | 0exp0e1 14038 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(0↑0) = 1 |
| 232 | 230, 231 | eqtrdi 2781 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 0 → (0↑𝑘) = 1) |
| 233 | | fveq2 6861 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 0 → (!‘𝑘) =
(!‘0)) |
| 234 | | fac0 14248 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(!‘0) = 1 |
| 235 | 233, 234 | eqtrdi 2781 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 0 → (!‘𝑘) = 1) |
| 236 | 232, 235 | oveq12d 7408 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → ((0↑𝑘) / (!‘𝑘)) = (1 / 1)) |
| 237 | | 1div1e1 11880 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (1 / 1) =
1 |
| 238 | 236, 237 | eqtrdi 2781 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → ((0↑𝑘) / (!‘𝑘)) = 1) |
| 239 | 229, 238 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → ((0↑𝑘) / (!‘𝑘)) = 1) |
| 240 | | ax-1cn 11133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℂ |
| 241 | 239, 240 | eqeltrdi 2837 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → ((0↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 242 | | eldifi 4097 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ ((0...𝑁) ∖ {0}) → 𝑘 ∈ (0...𝑁)) |
| 243 | 242 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ (0...𝑁)) |
| 244 | 243, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ ℕ0) |
| 245 | | eldifsni 4757 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ((0...𝑁) ∖ {0}) → 𝑘 ≠ 0) |
| 246 | 245 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ≠ 0) |
| 247 | | eldifsn 4753 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (ℕ0
∖ {0}) ↔ (𝑘
∈ ℕ0 ∧ 𝑘 ≠ 0)) |
| 248 | 244, 246,
247 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ (ℕ0 ∖
{0})) |
| 249 | | dfn2 12462 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℕ =
(ℕ0 ∖ {0}) |
| 250 | 248, 249 | eleqtrrdi 2840 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ ℕ) |
| 251 | 250 | 0expd 14111 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (0↑𝑘) = 0) |
| 252 | 251 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → ((0↑𝑘) / (!‘𝑘)) = (0 / (!‘𝑘))) |
| 253 | 244 | faccld 14256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ∈
ℕ) |
| 254 | 253 | nncnd 12209 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ∈
ℂ) |
| 255 | 253 | nnne0d 12243 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ≠ 0) |
| 256 | 254, 255 | div0d 11964 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (0 / (!‘𝑘)) = 0) |
| 257 | 252, 256 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → ((0↑𝑘) / (!‘𝑘)) = 0) |
| 258 | | fzfid 13945 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (0...𝑁) ∈ Fin) |
| 259 | 227, 241,
257, 258 | fsumss 15698 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((0↑𝑘) / (!‘𝑘))) |
| 260 | 221, 259 | eqtr4d 2768 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘))) |
| 261 | | 0cn 11173 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℂ |
| 262 | 238 | sumsn 15719 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℂ ∧ 1 ∈ ℂ) → Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)) = 1) |
| 263 | 261, 240,
262 | mp2an 692 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑘 ∈ {0}
((0↑𝑘) /
(!‘𝑘)) =
1 |
| 264 | 260, 263 | eqtrdi 2781 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = 1) |
| 265 | 207, 264 | oveq12d 7408 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = (𝑥 · 1)) |
| 266 | 191 | mulridd 11198 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · 1) = 𝑥) |
| 267 | 266 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑥 · 1) = 𝑥) |
| 268 | 265, 267 | eqtrd 2765 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = 𝑥) |
| 269 | 268 | oveq2d 7406 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · 𝑥)) |
| 270 | 210, 269 | oveq12d 7408 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥))) |
| 271 | | ovexd 7425 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) ∈ V) |
| 272 | 206, 270,
94, 271 | fvmptd 6978 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥))) |
| 273 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → 𝑦 = 1) |
| 274 | 273 | fveq2d 6865 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (⌊‘𝑦) =
(⌊‘1)) |
| 275 | | flid 13777 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 ∈
ℤ → (⌊‘1) = 1) |
| 276 | 81, 275 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(⌊‘1) = 1 |
| 277 | 274, 276 | eqtrdi 2781 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (⌊‘𝑦) = 1) |
| 278 | 277 | oveq2d 7406 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (1...(⌊‘𝑦)) = (1...1)) |
| 279 | 278 | sumeq1d 15673 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = Σ𝑛 ∈ (1...1)((log‘(𝑥 / 𝑛))↑𝑁)) |
| 280 | 191 | div1d 11957 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 / 1) = 𝑥) |
| 281 | 280 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 1) = 𝑥) |
| 282 | 281 | fveq2d 6865 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (log‘(𝑥 / 1)) = (log‘𝑥)) |
| 283 | 282 | oveq1d 7405 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 1))↑𝑁) = ((log‘𝑥)↑𝑁)) |
| 284 | 195 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘𝑥)↑𝑁) ∈ ℂ) |
| 285 | 283, 284 | eqeltrd 2829 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 1))↑𝑁) ∈ ℂ) |
| 286 | | oveq2 7398 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (𝑥 / 𝑛) = (𝑥 / 1)) |
| 287 | 286 | fveq2d 6865 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (log‘(𝑥 / 𝑛)) = (log‘(𝑥 / 1))) |
| 288 | 287 | oveq1d 7405 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → ((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁)) |
| 289 | 288 | fsum1 15720 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℤ ∧ ((log‘(𝑥 / 1))↑𝑁) ∈ ℂ) → Σ𝑛 ∈
(1...1)((log‘(𝑥 /
𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁)) |
| 290 | 81, 285, 289 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...1)((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁)) |
| 291 | 279, 290,
283 | 3eqtrd 2769 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘𝑥)↑𝑁)) |
| 292 | 273 | oveq2d 7406 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 𝑦) = (𝑥 / 1)) |
| 293 | 292, 281 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 𝑦) = 𝑥) |
| 294 | 293 | fveq2d 6865 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (log‘(𝑥 / 𝑦)) = (log‘𝑥)) |
| 295 | 294 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = (log‘𝑥)) |
| 296 | 295 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) = ((log‘𝑥)↑𝑘)) |
| 297 | 296 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = (((log‘𝑥)↑𝑘) / (!‘𝑘))) |
| 298 | 297 | sumeq2dv 15675 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) |
| 299 | 273, 298 | oveq12d 7408 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = (1 · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) |
| 300 | 202 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 301 | 300 | mullidd 11199 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (1 · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) |
| 302 | 299, 301 | eqtrd 2765 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) |
| 303 | 302 | oveq2d 7406 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) |
| 304 | 291, 303 | oveq12d 7408 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) |
| 305 | | ovexd 7425 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ V) |
| 306 | 206, 304,
178, 305 | fvmptd 6978 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1) = (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) |
| 307 | 272, 306 | oveq12d 7408 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1)) = ((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))))) |
| 308 | 70, 72, 191 | subdird 11642 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥) = ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) − ((!‘𝑁) · 𝑥))) |
| 309 | 64 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℂ) |
| 310 | 212 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≠ 0) |
| 311 | 309, 191,
310 | divcan1d 11966 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))))) |
| 312 | 311 | oveq1d 7405 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) − ((!‘𝑁) · 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥))) |
| 313 | 308, 312 | eqtrd 2765 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥))) |
| 314 | 205, 307,
313 | 3eqtr4d 2775 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1)) = ((((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥)) |
| 315 | 314 | fveq2d 6865 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) =
(abs‘((((Σ𝑛
∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥))) |
| 316 | 73, 191 | absmuld 15430 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥)) = ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · (abs‘𝑥))) |
| 317 | | rprege0 12974 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
| 318 | 317 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
| 319 | | absid 15269 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) → (abs‘𝑥) = 𝑥) |
| 320 | 318, 319 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘𝑥) = 𝑥) |
| 321 | 320 | oveq2d 7406 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · (abs‘𝑥)) = ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥)) |
| 322 | 315, 316,
321 | 3eqtrd 2769 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) =
((abs‘(((Σ𝑛
∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥)) |
| 323 | | 1cnd 11176 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ) |
| 324 | 294 | oveq1d 7405 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘𝑥)↑𝑁)) |
| 325 | 323, 324 | csbied 3901 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ⦋1 / 𝑦⦌((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘𝑥)↑𝑁)) |
| 326 | 183, 322,
325 | 3brtr3d 5141 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥) ≤ ((log‘𝑥)↑𝑁)) |
| 327 | 14 | adantrr 717 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥)↑𝑁) ∈ ℝ) |
| 328 | 74, 327, 94 | lemuldivd 13051 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥) ≤ ((log‘𝑥)↑𝑁) ↔ (abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (((log‘𝑥)↑𝑁) / 𝑥))) |
| 329 | 326, 328 | mpbid 232 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (((log‘𝑥)↑𝑁) / 𝑥)) |
| 330 | 75 | leabsd 15388 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ≤ (abs‘(((log‘𝑥)↑𝑁) / 𝑥))) |
| 331 | 74, 75, 77, 329, 330 | letrd 11338 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (abs‘(((log‘𝑥)↑𝑁) / 𝑥))) |
| 332 | 57 | adantrr 717 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ) |
| 333 | 332 | subid1d 11529 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((((log‘𝑥)↑𝑁) / 𝑥) − 0) = (((log‘𝑥)↑𝑁) / 𝑥)) |
| 334 | 333 | fveq2d 6865 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥)↑𝑁) / 𝑥) − 0)) = (abs‘(((log‘𝑥)↑𝑁) / 𝑥))) |
| 335 | 331, 334 | breqtrrd 5138 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (abs‘((((log‘𝑥)↑𝑁) / 𝑥) − 0))) |
| 336 | 33, 34, 54, 57, 69, 335 | rlimsqzlem 15622 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥)) ⇝𝑟 (!‘𝑁)) |
| 337 | | divsubdir 11883 |
. . . . . 6
⊢
((((log‘𝑥)↑𝑁) ∈ ℂ ∧ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) = ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) |
| 338 | 59, 62, 66, 337 | syl3anc 1373 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) = ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) |
| 339 | 338 | mpteq2dva 5203 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (𝑥 ∈ ℝ+ ↦
((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)))) |
| 340 | | rerpdivcl 12990 |
. . . . . . 7
⊢
((((!‘𝑁)
· Σ𝑘 ∈
(0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) →
(((!‘𝑁) ·
Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) ∈ ℝ) |
| 341 | 27, 340 | sylancom 588 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) ∈ ℝ) |
| 342 | | divass 11862 |
. . . . . . . . . 10
⊢
(((!‘𝑁) ∈
ℂ ∧ Σ𝑘
∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥))) |
| 343 | 60, 61, 66, 342 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥))) |
| 344 | 25 | recnd 11209 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 345 | 18, 67, 344, 68 | fsumdivc 15759 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥)) |
| 346 | 22 | recnd 11209 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℂ) |
| 347 | 24 | nnrpd 13000 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈
ℝ+) |
| 348 | 347 | rpcnne0d 13011 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((!‘𝑘) ∈ ℂ ∧ (!‘𝑘) ≠ 0)) |
| 349 | 66 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
| 350 | | divdiv32 11897 |
. . . . . . . . . . . . 13
⊢
((((log‘𝑥)↑𝑘) ∈ ℂ ∧ ((!‘𝑘) ∈ ℂ ∧
(!‘𝑘) ≠ 0) ∧
(𝑥 ∈ ℂ ∧
𝑥 ≠ 0)) →
((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) |
| 351 | 346, 348,
349, 350 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) |
| 352 | 351 | sumeq2dv 15675 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) |
| 353 | 345, 352 | eqtrd 2765 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) |
| 354 | 353 | oveq2d 7406 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥)) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) |
| 355 | 343, 354 | eqtrd 2765 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) |
| 356 | 355 | mpteq2dva 5203 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)) = (𝑥 ∈ ℝ+ ↦
((!‘𝑁) ·
Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))))) |
| 357 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℝ+) |
| 358 | 22, 357 | rerpdivcld 13033 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / 𝑥) ∈ ℝ) |
| 359 | 358, 24 | nndivred 12247 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ) |
| 360 | 18, 359 | fsumrecl 15707 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ) |
| 361 | | rpssre 12966 |
. . . . . . . . . 10
⊢
ℝ+ ⊆ ℝ |
| 362 | | rlimconst 15517 |
. . . . . . . . . 10
⊢
((ℝ+ ⊆ ℝ ∧ (!‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦
(!‘𝑁))
⇝𝑟 (!‘𝑁)) |
| 363 | 361, 34, 362 | sylancr 587 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (!‘𝑁)) ⇝𝑟
(!‘𝑁)) |
| 364 | 361 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ ℝ+ ⊆ ℝ) |
| 365 | | fzfid 13945 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (0...𝑁) ∈
Fin) |
| 366 | 359 | anasss 466 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 𝑘
∈ (0...𝑁))) →
((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ) |
| 367 | 358 | an32s 652 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) →
(((log‘𝑥)↑𝑘) / 𝑥) ∈ ℝ) |
| 368 | 20 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 369 | 368 | faccld 14256 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈
ℕ) |
| 370 | 369 | nnred 12208 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈
ℝ) |
| 371 | 370 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) →
(!‘𝑘) ∈
ℝ) |
| 372 | 368, 53 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦
(((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟
0) |
| 373 | 369 | nncnd 12209 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈
ℂ) |
| 374 | | rlimconst 15517 |
. . . . . . . . . . . . . 14
⊢
((ℝ+ ⊆ ℝ ∧ (!‘𝑘) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦
(!‘𝑘))
⇝𝑟 (!‘𝑘)) |
| 375 | 361, 373,
374 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦
(!‘𝑘))
⇝𝑟 (!‘𝑘)) |
| 376 | 369 | nnne0d 12243 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0) |
| 377 | 376 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) →
(!‘𝑘) ≠
0) |
| 378 | 367, 371,
372, 375, 376, 377 | rlimdiv 15619 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦
((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 (0 /
(!‘𝑘))) |
| 379 | 373, 376 | div0d 11964 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (0 / (!‘𝑘)) = 0) |
| 380 | 378, 379 | breqtrd 5136 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦
((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟
0) |
| 381 | 364, 365,
366, 380 | fsumrlim 15784 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 Σ𝑘 ∈ (0...𝑁)0) |
| 382 | | fzfi 13944 |
. . . . . . . . . . . 12
⊢
(0...𝑁) ∈
Fin |
| 383 | 382 | olci 866 |
. . . . . . . . . . 11
⊢
((0...𝑁) ⊆
(ℤ≥‘0) ∨ (0...𝑁) ∈ Fin) |
| 384 | | sumz 15695 |
. . . . . . . . . . 11
⊢
(((0...𝑁) ⊆
(ℤ≥‘0) ∨ (0...𝑁) ∈ Fin) → Σ𝑘 ∈ (0...𝑁)0 = 0) |
| 385 | 383, 384 | ax-mp 5 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...𝑁)0 =
0 |
| 386 | 381, 385 | breqtrdi 5151 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟
0) |
| 387 | 17, 360, 363, 386 | rlimmul 15618 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) ⇝𝑟
((!‘𝑁) ·
0)) |
| 388 | 34 | mul01d 11380 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ((!‘𝑁)
· 0) = 0) |
| 389 | 387, 388 | breqtrd 5136 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) ⇝𝑟
0) |
| 390 | 356, 389 | eqbrtrd 5132 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)) ⇝𝑟
0) |
| 391 | 56, 341, 54, 390 | rlimsub 15617 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) ⇝𝑟 (0 −
0)) |
| 392 | | 0m0e0 12308 |
. . . . 5
⊢ (0
− 0) = 0 |
| 393 | 391, 392 | breqtrdi 5151 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) ⇝𝑟
0) |
| 394 | 339, 393 | eqbrtrd 5132 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) ⇝𝑟
0) |
| 395 | 30, 32, 336, 394 | rlimadd 15616 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) ⇝𝑟
((!‘𝑁) +
0)) |
| 396 | | divsubdir 11883 |
. . . . . 6
⊢
((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ ∧ (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) |
| 397 | 58, 63, 66, 396 | syl3anc 1373 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) |
| 398 | 397 | oveq1d 7405 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) |
| 399 | 10, 2 | rerpdivcld 13033 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) ∈ ℝ) |
| 400 | 399 | recnd 11209 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) ∈ ℂ) |
| 401 | 32 | recnd 11209 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℂ) |
| 402 | 400, 401 | npcand 11544 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)) |
| 403 | 398, 402 | eqtrd 2765 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)) |
| 404 | 403 | mpteq2dva 5203 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥))) |
| 405 | 34 | addridd 11381 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((!‘𝑁) + 0) =
(!‘𝑁)) |
| 406 | 395, 404,
405 | 3brtr3d 5141 |
1
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)) ⇝𝑟 (!‘𝑁)) |