MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logexprlim Structured version   Visualization version   GIF version

Theorem logexprlim 27164
Description: The sum Σ𝑛𝑥, log↑𝑁(𝑥 / 𝑛) has the asymptotic expansion (𝑁!)𝑥 + 𝑜(𝑥). (More precisely, the omitted term has order 𝑂(log↑𝑁(𝑥) / 𝑥).) (Contributed by Mario Carneiro, 22-May-2016.)
Assertion
Ref Expression
logexprlim (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)) ⇝𝑟 (!‘𝑁))
Distinct variable group:   𝑥,𝑛,𝑁

Proof of Theorem logexprlim
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13882 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 simpr 484 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
3 elfznn 13455 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
43nnrpd 12934 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
5 rpdivcl 12919 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
62, 4, 5syl2an 596 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
76relogcld 26560 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
8 simpll 766 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ0)
97, 8reexpcld 14072 . . . . . 6 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ)
101, 9fsumrecl 15643 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ)
11 relogcl 26512 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
12 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
13 reexpcl 13987 . . . . . . 7 (((log‘𝑥) ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((log‘𝑥)↑𝑁) ∈ ℝ)
1411, 12, 13syl2anr 597 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((log‘𝑥)↑𝑁) ∈ ℝ)
15 faccl 14192 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
1615adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (!‘𝑁) ∈ ℕ)
1716nnred 12147 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (!‘𝑁) ∈ ℝ)
18 fzfid 13882 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (0...𝑁) ∈ Fin)
1911adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
20 elfznn0 13522 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
21 reexpcl 13987 . . . . . . . . . 10 (((log‘𝑥) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((log‘𝑥)↑𝑘) ∈ ℝ)
2219, 20, 21syl2an 596 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℝ)
2320adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
2423faccld 14193 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
2522, 24nndivred 12186 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ)
2618, 25fsumrecl 15643 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ)
2717, 26remulcld 11149 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℝ)
2814, 27resubcld 11552 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℝ)
2910, 28resubcld 11552 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℝ)
3029, 2rerpdivcld 12967 . . 3 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℝ)
31 rerpdivcl 12924 . . . 4 (((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℝ)
3228, 31sylancom 588 . . 3 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℝ)
33 1red 11120 . . . 4 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
3415nncnd 12148 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
35 simpl 482 . . . . . . . . 9 ((𝑘 = 𝑁𝑥 ∈ ℝ+) → 𝑘 = 𝑁)
3635oveq2d 7368 . . . . . . . 8 ((𝑘 = 𝑁𝑥 ∈ ℝ+) → ((log‘𝑥)↑𝑘) = ((log‘𝑥)↑𝑁))
3736oveq1d 7367 . . . . . . 7 ((𝑘 = 𝑁𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑘) / 𝑥) = (((log‘𝑥)↑𝑁) / 𝑥))
3837mpteq2dva 5186 . . . . . 6 (𝑘 = 𝑁 → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑁) / 𝑥)))
3938breq1d 5103 . . . . 5 (𝑘 = 𝑁 → ((𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟 0 ↔ (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑁) / 𝑥)) ⇝𝑟 0))
4011recnd 11147 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
41 id 22 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
42 cxpexp 26605 . . . . . . . . 9 (((log‘𝑥) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((log‘𝑥)↑𝑐𝑘) = ((log‘𝑥)↑𝑘))
4340, 41, 42syl2anr 597 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑥 ∈ ℝ+) → ((log‘𝑥)↑𝑐𝑘) = ((log‘𝑥)↑𝑘))
44 rpcn 12903 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
4544adantl 481 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
4645cxp1d 26643 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
4743, 46oveq12d 7370 . . . . . . 7 ((𝑘 ∈ ℕ0𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑐𝑘) / (𝑥𝑐1)) = (((log‘𝑥)↑𝑘) / 𝑥))
4847mpteq2dva 5186 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑐𝑘) / (𝑥𝑐1))) = (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)))
49 nn0cn 12398 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
50 1rp 12896 . . . . . . 7 1 ∈ ℝ+
51 cxploglim2 26917 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 1 ∈ ℝ+) → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑐𝑘) / (𝑥𝑐1))) ⇝𝑟 0)
5249, 50, 51sylancl 586 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑐𝑘) / (𝑥𝑐1))) ⇝𝑟 0)
5348, 52eqbrtrrd 5117 . . . . 5 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟 0)
5439, 53vtoclga 3529 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑁) / 𝑥)) ⇝𝑟 0)
55 rerpdivcl 12924 . . . . . 6 ((((log‘𝑥)↑𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ)
5614, 55sylancom 588 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ)
5756recnd 11147 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ)
5810recnd 11147 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ)
5914recnd 11147 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((log‘𝑥)↑𝑁) ∈ ℂ)
6034adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (!‘𝑁) ∈ ℂ)
6126recnd 11147 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ)
6260, 61mulcld 11139 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ)
6359, 62subcld 11479 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ)
6458, 63subcld 11479 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℂ)
65 rpcnne0 12911 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
6665adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
6766simpld 494 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
6866simprd 495 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
6964, 67, 68divcld 11904 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℂ)
7069adantrr 717 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℂ)
7115adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ∈ ℕ)
7271nncnd 12148 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ∈ ℂ)
7370, 72subcld 11479 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) ∈ ℂ)
7473abscld 15348 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ∈ ℝ)
7556adantrr 717 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ)
7675recnd 11147 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ)
7776abscld 15348 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥)↑𝑁) / 𝑥)) ∈ ℝ)
78 ioorp 13327 . . . . . . . . . 10 (0(,)+∞) = ℝ+
7978eqcomi 2742 . . . . . . . . 9 + = (0(,)+∞)
80 nnuz 12777 . . . . . . . . 9 ℕ = (ℤ‘1)
81 1z 12508 . . . . . . . . . 10 1 ∈ ℤ
8281a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℤ)
83 1red 11120 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ)
84 1re 11119 . . . . . . . . . . 11 1 ∈ ℝ
85 1nn0 12404 . . . . . . . . . . 11 1 ∈ ℕ0
8684, 85nn0addge1i 12436 . . . . . . . . . 10 1 ≤ (1 + 1)
8786a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ (1 + 1))
88 0red 11122 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ ℝ)
8971adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (!‘𝑁) ∈ ℕ)
9089nnred 12147 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (!‘𝑁) ∈ ℝ)
91 rpre 12901 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
9291adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
93 fzfid 13882 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (0...𝑁) ∈ Fin)
94 simprl 770 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
95 rpdivcl 12919 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 / 𝑦) ∈ ℝ+)
9694, 95sylan 580 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑥 / 𝑦) ∈ ℝ+)
9796relogcld 26560 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (log‘(𝑥 / 𝑦)) ∈ ℝ)
98 reexpcl 13987 . . . . . . . . . . . . . 14 (((log‘(𝑥 / 𝑦)) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((log‘(𝑥 / 𝑦))↑𝑘) ∈ ℝ)
9997, 20, 98syl2an 596 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) ∈ ℝ)
10020adantl 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
101100faccld 14193 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
10299, 101nndivred 12186 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) ∈ ℝ)
10393, 102fsumrecl 15643 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) ∈ ℝ)
10492, 103remulcld 11149 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) ∈ ℝ)
10590, 104remulcld 11149 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) ∈ ℝ)
106 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑁 ∈ ℕ0)
10797, 106reexpcld 14072 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → ((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℝ)
108 nnrp 12904 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
109108, 107sylan2 593 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℕ) → ((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℝ)
110 reelprrecn 11105 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
111110a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ℝ ∈ {ℝ, ℂ})
112104recnd 11147 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) ∈ ℂ)
113107, 89nndivred 12186 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)) ∈ ℝ)
114 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈ ℕ0)
115 advlogexp 26592 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑦 ∈ ℝ+ ↦ (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (𝑦 ∈ ℝ+ ↦ (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁))))
11694, 114, 115syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦ (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (𝑦 ∈ ℝ+ ↦ (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁))))
117111, 112, 113, 116, 72dvmptcmul 25896 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦ ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦ ((!‘𝑁) · (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)))))
118107recnd 11147 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → ((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℂ)
11972adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (!‘𝑁) ∈ ℂ)
12071nnne0d 12182 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ≠ 0)
121120adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (!‘𝑁) ≠ 0)
122118, 119, 121divcan2d 11906 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → ((!‘𝑁) · (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁))) = ((log‘(𝑥 / 𝑦))↑𝑁))
123122mpteq2dva 5186 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑦 ∈ ℝ+ ↦ ((!‘𝑁) · (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)))) = (𝑦 ∈ ℝ+ ↦ ((log‘(𝑥 / 𝑦))↑𝑁)))
124117, 123eqtrd 2768 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦ ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦ ((log‘(𝑥 / 𝑦))↑𝑁)))
125 oveq2 7360 . . . . . . . . . . 11 (𝑦 = 𝑛 → (𝑥 / 𝑦) = (𝑥 / 𝑛))
126125fveq2d 6832 . . . . . . . . . 10 (𝑦 = 𝑛 → (log‘(𝑥 / 𝑦)) = (log‘(𝑥 / 𝑛)))
127126oveq1d 7367 . . . . . . . . 9 (𝑦 = 𝑛 → ((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘(𝑥 / 𝑛))↑𝑁))
12894rpxrd 12937 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ*)
129 simp1rl 1239 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑥 ∈ ℝ+)
130 simp2r 1201 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑛 ∈ ℝ+)
131129, 130rpdivcld 12953 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (𝑥 / 𝑛) ∈ ℝ+)
132131relogcld 26560 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
133 simp2l 1200 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑦 ∈ ℝ+)
134129, 133rpdivcld 12953 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (𝑥 / 𝑦) ∈ ℝ+)
135134relogcld 26560 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (log‘(𝑥 / 𝑦)) ∈ ℝ)
136 simp1l 1198 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑁 ∈ ℕ0)
137 log1 26522 . . . . . . . . . . 11 (log‘1) = 0
138130rpcnd 12938 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑛 ∈ ℂ)
139138mullidd 11137 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (1 · 𝑛) = 𝑛)
140 simp33 1212 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑛𝑥)
141139, 140eqbrtrd 5115 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (1 · 𝑛) ≤ 𝑥)
142 1red 11120 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 1 ∈ ℝ)
143129rpred 12936 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑥 ∈ ℝ)
144142, 143, 130lemuldivd 12985 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
145141, 144mpbid 232 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 1 ≤ (𝑥 / 𝑛))
146 logleb 26540 . . . . . . . . . . . . 13 ((1 ∈ ℝ+ ∧ (𝑥 / 𝑛) ∈ ℝ+) → (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛))))
14750, 131, 146sylancr 587 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛))))
148145, 147mpbid 232 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (log‘1) ≤ (log‘(𝑥 / 𝑛)))
149137, 148eqbrtrrid 5129 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 0 ≤ (log‘(𝑥 / 𝑛)))
150 simp32 1211 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑦𝑛)
151133, 130, 129lediv2d 12960 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (𝑦𝑛 ↔ (𝑥 / 𝑛) ≤ (𝑥 / 𝑦)))
152150, 151mpbid 232 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (𝑥 / 𝑛) ≤ (𝑥 / 𝑦))
153131, 134logled 26564 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → ((𝑥 / 𝑛) ≤ (𝑥 / 𝑦) ↔ (log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦))))
154152, 153mpbid 232 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦)))
155 leexp1a 14084 . . . . . . . . . 10 ((((log‘(𝑥 / 𝑛)) ∈ ℝ ∧ (log‘(𝑥 / 𝑦)) ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ (log‘(𝑥 / 𝑛)) ∧ (log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦)))) → ((log‘(𝑥 / 𝑛))↑𝑁) ≤ ((log‘(𝑥 / 𝑦))↑𝑁))
156132, 135, 136, 149, 154, 155syl32anc 1380 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → ((log‘(𝑥 / 𝑛))↑𝑁) ≤ ((log‘(𝑥 / 𝑦))↑𝑁))
157 eqid 2733 . . . . . . . . 9 (𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))
158963ad2antr1 1189 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (𝑥 / 𝑦) ∈ ℝ+)
159158relogcld 26560 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (log‘(𝑥 / 𝑦)) ∈ ℝ)
160 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 𝑁 ∈ ℕ0)
161 rpcn 12903 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
162161adantl 481 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
1631623ad2antr1 1189 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 𝑦 ∈ ℂ)
164163mullidd 11137 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (1 · 𝑦) = 𝑦)
165 simpr3 1197 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 𝑦𝑥)
166164, 165eqbrtrd 5115 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (1 · 𝑦) ≤ 𝑥)
167 1red 11120 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 1 ∈ ℝ)
16894rpred 12936 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
169168adantr 480 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 𝑥 ∈ ℝ)
170 simpr1 1195 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 𝑦 ∈ ℝ+)
171167, 169, 170lemuldivd 12985 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → ((1 · 𝑦) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑦)))
172166, 171mpbid 232 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 1 ≤ (𝑥 / 𝑦))
173 logleb 26540 . . . . . . . . . . . . 13 ((1 ∈ ℝ+ ∧ (𝑥 / 𝑦) ∈ ℝ+) → (1 ≤ (𝑥 / 𝑦) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑦))))
17450, 158, 173sylancr 587 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (1 ≤ (𝑥 / 𝑦) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑦))))
175172, 174mpbid 232 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (log‘1) ≤ (log‘(𝑥 / 𝑦)))
176137, 175eqbrtrrid 5129 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 0 ≤ (log‘(𝑥 / 𝑦)))
177159, 160, 176expge0d 14073 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑦))↑𝑁))
17850a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ+)
179 1le1 11752 . . . . . . . . . 10 1 ≤ 1
180179a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 1)
181 simprr 772 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
182168leidd 11690 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥𝑥)
18379, 80, 82, 83, 87, 88, 105, 107, 109, 124, 127, 128, 156, 157, 177, 178, 94, 180, 181, 182dvfsumlem4 25964 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) ≤ 1 / 𝑦((log‘(𝑥 / 𝑦))↑𝑁))
184 fzfid 13882 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
18594, 4, 5syl2an 596 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
186185relogcld 26560 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
187 simpll 766 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ0)
188186, 187reexpcld 14072 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ)
189184, 188fsumrecl 15643 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ)
190189recnd 11147 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ)
19194rpcnd 12938 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ)
19272, 191mulcld 11139 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((!‘𝑁) · 𝑥) ∈ ℂ)
19311ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
194193recnd 11147 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
195194, 114expcld 14055 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥)↑𝑁) ∈ ℂ)
196 fzfid 13882 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (0...𝑁) ∈ Fin)
197193, 20, 21syl2an 596 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℝ)
19820adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
199198faccld 14193 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
200197, 199nndivred 12186 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ)
201200recnd 11147 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ)
202196, 201fsumcl 15642 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ)
20372, 202mulcld 11139 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ)
204195, 203subcld 11479 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ)
205190, 192, 204sub32d 11511 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥)))
206 eqidd 2734 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))))
207 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
208207fveq2d 6832 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (⌊‘𝑦) = (⌊‘𝑥))
209208oveq2d 7368 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (1...(⌊‘𝑦)) = (1...(⌊‘𝑥)))
210209sumeq1d 15609 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁))
211 oveq2 7360 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (𝑥 / 𝑦) = (𝑥 / 𝑥))
21265ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
213 divid 11814 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥 / 𝑥) = 1)
214212, 213syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 / 𝑥) = 1)
215211, 214sylan9eqr 2790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑥 / 𝑦) = 1)
216215adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 / 𝑦) = 1)
217216fveq2d 6832 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = (log‘1))
218217, 137eqtrdi 2784 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = 0)
219218oveq1d 7367 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) = (0↑𝑘))
220219oveq1d 7367 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = ((0↑𝑘) / (!‘𝑘)))
221220sumeq2dv 15611 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((0↑𝑘) / (!‘𝑘)))
222 nn0uz 12776 . . . . . . . . . . . . . . . . . . . . . . . 24 0 = (ℤ‘0)
223114, 222eleqtrdi 2843 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈ (ℤ‘0))
224 eluzfz1 13433 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
225223, 224syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ (0...𝑁))
226225adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → 0 ∈ (0...𝑁))
227226snssd 4760 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → {0} ⊆ (0...𝑁))
228 elsni 4592 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ {0} → 𝑘 = 0)
229228adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → 𝑘 = 0)
230 oveq2 7360 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 0 → (0↑𝑘) = (0↑0))
231 0exp0e1 13975 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0↑0) = 1
232230, 231eqtrdi 2784 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 0 → (0↑𝑘) = 1)
233 fveq2 6828 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 0 → (!‘𝑘) = (!‘0))
234 fac0 14185 . . . . . . . . . . . . . . . . . . . . . . . . 25 (!‘0) = 1
235233, 234eqtrdi 2784 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 0 → (!‘𝑘) = 1)
236232, 235oveq12d 7370 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 0 → ((0↑𝑘) / (!‘𝑘)) = (1 / 1))
237 1div1e1 11819 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 1) = 1
238236, 237eqtrdi 2784 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 0 → ((0↑𝑘) / (!‘𝑘)) = 1)
239229, 238syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → ((0↑𝑘) / (!‘𝑘)) = 1)
240 ax-1cn 11071 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
241239, 240eqeltrdi 2841 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → ((0↑𝑘) / (!‘𝑘)) ∈ ℂ)
242 eldifi 4080 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ((0...𝑁) ∖ {0}) → 𝑘 ∈ (0...𝑁))
243242adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ (0...𝑁))
244243, 20syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ ℕ0)
245 eldifsni 4741 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ((0...𝑁) ∖ {0}) → 𝑘 ≠ 0)
246245adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ≠ 0)
247 eldifsn 4737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (ℕ0 ∖ {0}) ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
248244, 246, 247sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ (ℕ0 ∖ {0}))
249 dfn2 12401 . . . . . . . . . . . . . . . . . . . . . . . 24 ℕ = (ℕ0 ∖ {0})
250248, 249eleqtrrdi 2844 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ ℕ)
2512500expd 14048 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (0↑𝑘) = 0)
252251oveq1d 7367 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → ((0↑𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
253244faccld 14193 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ∈ ℕ)
254253nncnd 12148 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ∈ ℂ)
255253nnne0d 12182 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ≠ 0)
256254, 255div0d 11903 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (0 / (!‘𝑘)) = 0)
257252, 256eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → ((0↑𝑘) / (!‘𝑘)) = 0)
258 fzfid 13882 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (0...𝑁) ∈ Fin)
259227, 241, 257, 258fsumss 15634 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((0↑𝑘) / (!‘𝑘)))
260221, 259eqtr4d 2771 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)))
261 0cn 11111 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
262238sumsn 15655 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)) = 1)
263261, 240, 262mp2an 692 . . . . . . . . . . . . . . . . . 18 Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)) = 1
264260, 263eqtrdi 2784 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = 1)
265207, 264oveq12d 7370 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = (𝑥 · 1))
266191mulridd 11136 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · 1) = 𝑥)
267266adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑥 · 1) = 𝑥)
268265, 267eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = 𝑥)
269268oveq2d 7368 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · 𝑥))
270210, 269oveq12d 7370 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)))
271 ovexd 7387 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) ∈ V)
272206, 270, 94, 271fvmptd 6942 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)))
273 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → 𝑦 = 1)
274273fveq2d 6832 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (⌊‘𝑦) = (⌊‘1))
275 flid 13714 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℤ → (⌊‘1) = 1)
27681, 275ax-mp 5 . . . . . . . . . . . . . . . . . 18 (⌊‘1) = 1
277274, 276eqtrdi 2784 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (⌊‘𝑦) = 1)
278277oveq2d 7368 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (1...(⌊‘𝑦)) = (1...1))
279278sumeq1d 15609 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = Σ𝑛 ∈ (1...1)((log‘(𝑥 / 𝑛))↑𝑁))
280191div1d 11896 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 / 1) = 𝑥)
281280adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 1) = 𝑥)
282281fveq2d 6832 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (log‘(𝑥 / 1)) = (log‘𝑥))
283282oveq1d 7367 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 1))↑𝑁) = ((log‘𝑥)↑𝑁))
284195adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘𝑥)↑𝑁) ∈ ℂ)
285283, 284eqeltrd 2833 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 1))↑𝑁) ∈ ℂ)
286 oveq2 7360 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (𝑥 / 𝑛) = (𝑥 / 1))
287286fveq2d 6832 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (log‘(𝑥 / 𝑛)) = (log‘(𝑥 / 1)))
288287oveq1d 7367 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → ((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁))
289288fsum1 15656 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ ((log‘(𝑥 / 1))↑𝑁) ∈ ℂ) → Σ𝑛 ∈ (1...1)((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁))
29081, 285, 289sylancr 587 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...1)((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁))
291279, 290, 2833eqtrd 2772 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘𝑥)↑𝑁))
292273oveq2d 7368 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 𝑦) = (𝑥 / 1))
293292, 281eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 𝑦) = 𝑥)
294293fveq2d 6832 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (log‘(𝑥 / 𝑦)) = (log‘𝑥))
295294adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = (log‘𝑥))
296295oveq1d 7367 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) = ((log‘𝑥)↑𝑘))
297296oveq1d 7367 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = (((log‘𝑥)↑𝑘) / (!‘𝑘)))
298297sumeq2dv 15611 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))
299273, 298oveq12d 7370 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = (1 · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))
300202adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ)
301300mullidd 11137 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (1 · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))
302299, 301eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))
303302oveq2d 7368 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))
304291, 303oveq12d 7370 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))))
305 ovexd 7387 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ V)
306206, 304, 178, 305fvmptd 6942 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1) = (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))))
307272, 306oveq12d 7370 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))))
30870, 72, 191subdird 11581 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥) = ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) − ((!‘𝑁) · 𝑥)))
30964adantrr 717 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℂ)
310212simprd 495 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≠ 0)
311309, 191, 310divcan1d 11905 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))))
312311oveq1d 7367 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) − ((!‘𝑁) · 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥)))
313308, 312eqtrd 2768 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥)))
314205, 307, 3133eqtr4d 2778 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1)) = ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥))
315314fveq2d 6832 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) = (abs‘((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥)))
31673, 191absmuld 15366 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥)) = ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · (abs‘𝑥)))
317 rprege0 12908 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
318317ad2antrl 728 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
319 absid 15205 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
320318, 319syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘𝑥) = 𝑥)
321320oveq2d 7368 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · (abs‘𝑥)) = ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥))
322315, 316, 3213eqtrd 2772 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) = ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥))
323 1cnd 11114 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
324294oveq1d 7367 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘𝑥)↑𝑁))
325323, 324csbied 3882 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 / 𝑦((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘𝑥)↑𝑁))
326183, 322, 3253brtr3d 5124 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥) ≤ ((log‘𝑥)↑𝑁))
32714adantrr 717 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥)↑𝑁) ∈ ℝ)
32874, 327, 94lemuldivd 12985 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥) ≤ ((log‘𝑥)↑𝑁) ↔ (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (((log‘𝑥)↑𝑁) / 𝑥)))
329326, 328mpbid 232 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (((log‘𝑥)↑𝑁) / 𝑥))
33075leabsd 15324 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ≤ (abs‘(((log‘𝑥)↑𝑁) / 𝑥)))
33174, 75, 77, 329, 330letrd 11277 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (abs‘(((log‘𝑥)↑𝑁) / 𝑥)))
33257adantrr 717 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ)
333332subid1d 11468 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((log‘𝑥)↑𝑁) / 𝑥) − 0) = (((log‘𝑥)↑𝑁) / 𝑥))
334333fveq2d 6832 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥)↑𝑁) / 𝑥) − 0)) = (abs‘(((log‘𝑥)↑𝑁) / 𝑥)))
335331, 334breqtrrd 5121 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (abs‘((((log‘𝑥)↑𝑁) / 𝑥) − 0)))
33633, 34, 54, 57, 69, 335rlimsqzlem 15558 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥)) ⇝𝑟 (!‘𝑁))
337 divsubdir 11822 . . . . . 6 ((((log‘𝑥)↑𝑁) ∈ ℂ ∧ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) = ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)))
33859, 62, 66, 337syl3anc 1373 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) = ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)))
339338mpteq2dva 5186 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))))
340 rerpdivcl 12924 . . . . . . 7 ((((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) ∈ ℝ)
34127, 340sylancom 588 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) ∈ ℝ)
342 divass 11801 . . . . . . . . . 10 (((!‘𝑁) ∈ ℂ ∧ Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥)))
34360, 61, 66, 342syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥)))
34425recnd 11147 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ)
34518, 67, 344, 68fsumdivc 15695 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥))
34622recnd 11147 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℂ)
34724nnrpd 12934 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℝ+)
348347rpcnne0d 12945 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((!‘𝑘) ∈ ℂ ∧ (!‘𝑘) ≠ 0))
34966adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
350 divdiv32 11836 . . . . . . . . . . . . 13 ((((log‘𝑥)↑𝑘) ∈ ℂ ∧ ((!‘𝑘) ∈ ℂ ∧ (!‘𝑘) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))
351346, 348, 349, 350syl3anc 1373 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))
352351sumeq2dv 15611 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))
353345, 352eqtrd 2768 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))
354353oveq2d 7368 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥)) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))))
355343, 354eqtrd 2768 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))))
356355mpteq2dva 5186 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))))
3572adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℝ+)
35822, 357rerpdivcld 12967 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / 𝑥) ∈ ℝ)
359358, 24nndivred 12186 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ)
36018, 359fsumrecl 15643 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ)
361 rpssre 12900 . . . . . . . . . 10 + ⊆ ℝ
362 rlimconst 15453 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (!‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (!‘𝑁)) ⇝𝑟 (!‘𝑁))
363361, 34, 362sylancr 587 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (!‘𝑁)) ⇝𝑟 (!‘𝑁))
364361a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ℝ+ ⊆ ℝ)
365 fzfid 13882 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (0...𝑁) ∈ Fin)
366359anasss 466 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+𝑘 ∈ (0...𝑁))) → ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ)
367358an32s 652 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑘) / 𝑥) ∈ ℝ)
36820adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
369368faccld 14193 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
370369nnred 12147 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℝ)
371370adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) → (!‘𝑘) ∈ ℝ)
372368, 53syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟 0)
373369nncnd 12148 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℂ)
374 rlimconst 15453 . . . . . . . . . . . . . 14 ((ℝ+ ⊆ ℝ ∧ (!‘𝑘) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (!‘𝑘)) ⇝𝑟 (!‘𝑘))
375361, 373, 374sylancr 587 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦ (!‘𝑘)) ⇝𝑟 (!‘𝑘))
376369nnne0d 12182 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0)
377376adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) → (!‘𝑘) ≠ 0)
378367, 371, 372, 375, 376, 377rlimdiv 15555 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 (0 / (!‘𝑘)))
379373, 376div0d 11903 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (0 / (!‘𝑘)) = 0)
380378, 379breqtrd 5119 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 0)
381364, 365, 366, 380fsumrlim 15720 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 Σ𝑘 ∈ (0...𝑁)0)
382 fzfi 13881 . . . . . . . . . . . 12 (0...𝑁) ∈ Fin
383382olci 866 . . . . . . . . . . 11 ((0...𝑁) ⊆ (ℤ‘0) ∨ (0...𝑁) ∈ Fin)
384 sumz 15631 . . . . . . . . . . 11 (((0...𝑁) ⊆ (ℤ‘0) ∨ (0...𝑁) ∈ Fin) → Σ𝑘 ∈ (0...𝑁)0 = 0)
385383, 384ax-mp 5 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑁)0 = 0
386381, 385breqtrdi 5134 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 0)
38717, 360, 363, 386rlimmul 15554 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) ⇝𝑟 ((!‘𝑁) · 0))
38834mul01d 11319 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((!‘𝑁) · 0) = 0)
389387, 388breqtrd 5119 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) ⇝𝑟 0)
390356, 389eqbrtrd 5115 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)) ⇝𝑟 0)
39156, 341, 54, 390rlimsub 15553 . . . . 5 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) ⇝𝑟 (0 − 0))
392 0m0e0 12247 . . . . 5 (0 − 0) = 0
393391, 392breqtrdi 5134 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) ⇝𝑟 0)
394339, 393eqbrtrd 5115 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) ⇝𝑟 0)
39530, 32, 336, 394rlimadd 15552 . 2 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) ⇝𝑟 ((!‘𝑁) + 0))
396 divsubdir 11822 . . . . . 6 ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ ∧ (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)))
39758, 63, 66, 396syl3anc 1373 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)))
398397oveq1d 7367 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)))
39910, 2rerpdivcld 12967 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) ∈ ℝ)
400399recnd 11147 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) ∈ ℂ)
40132recnd 11147 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℂ)
402400, 401npcand 11483 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥))
403398, 402eqtrd 2768 . . 3 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥))
404403mpteq2dva 5186 . 2 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)))
40534addridd 11320 . 2 (𝑁 ∈ ℕ0 → ((!‘𝑁) + 0) = (!‘𝑁))
406395, 404, 4053brtr3d 5124 1 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)) ⇝𝑟 (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  csb 3846  cdif 3895  wss 3898  {csn 4575  {cpr 4577   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  +∞cpnf 11150  cle 11154  cmin 11351   / cdiv 11781  cn 12132  0cn0 12388  cz 12475  cuz 12738  +crp 12892  (,)cioo 13247  ...cfz 13409  cfl 13696  cexp 13970  !cfa 14182  abscabs 15143  𝑟 crli 15394  Σcsu 15595   D cdv 25792  logclog 26491  𝑐ccxp 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-e 15977  df-sin 15978  df-cos 15979  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494
This theorem is referenced by:  logfacrlim2  27165  selberglem2  27485
  Copyright terms: Public domain W3C validator