| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2rr | ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8267 tfrlem5 8351 omeu 8552 gruina 10778 4sqlem18 16940 vdwlem10 16968 mdetuni0 22515 mdetmul 22517 tsmsxp 24049 ax5seglem3 28865 btwnconn1lem1 36082 btwnconn1lem3 36084 btwnconn1lem4 36085 btwnconn1lem5 36086 btwnconn1lem6 36087 btwnconn1lem7 36088 btwnconn1lem12 36093 linethru 36148 2llnjN 39568 2lplnja 39620 2lplnj 39621 cdlemblem 39794 dalaw 39887 pclfinN 39901 lhpmcvr4N 40027 cdlemb2 40042 cdleme01N 40222 cdleme0ex2N 40225 cdleme7c 40246 cdlemefrs29bpre0 40397 cdlemefrs29cpre1 40399 cdlemefrs32fva1 40402 cdlemefs32sn1aw 40415 cdleme41sn3a 40434 cdleme48fv 40500 cdlemk21-2N 40892 dihmeetlem13N 41320 pellex 42830 lmhmfgsplit 43082 iunrelexpmin1 43704 |
| Copyright terms: Public domain | W3C validator |