| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2rr | ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8264 tfrlem5 8348 omeu 8549 gruina 10771 4sqlem18 16933 vdwlem10 16961 mdetuni0 22508 mdetmul 22510 tsmsxp 24042 ax5seglem3 28858 btwnconn1lem1 36075 btwnconn1lem3 36077 btwnconn1lem4 36078 btwnconn1lem5 36079 btwnconn1lem6 36080 btwnconn1lem7 36081 btwnconn1lem12 36086 linethru 36141 2llnjN 39561 2lplnja 39613 2lplnj 39614 cdlemblem 39787 dalaw 39880 pclfinN 39894 lhpmcvr4N 40020 cdlemb2 40035 cdleme01N 40215 cdleme0ex2N 40218 cdleme7c 40239 cdlemefrs29bpre0 40390 cdlemefrs29cpre1 40392 cdlemefrs32fva1 40395 cdlemefs32sn1aw 40408 cdleme41sn3a 40427 cdleme48fv 40493 cdlemk21-2N 40885 dihmeetlem13N 41313 pellex 42823 lmhmfgsplit 43075 iunrelexpmin1 43697 |
| Copyright terms: Public domain | W3C validator |