| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2rr | ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8215 tfrlem5 8299 omeu 8500 gruina 10706 4sqlem18 16871 vdwlem10 16899 mdetuni0 22534 mdetmul 22536 tsmsxp 24068 ax5seglem3 28907 btwnconn1lem1 36120 btwnconn1lem3 36122 btwnconn1lem4 36123 btwnconn1lem5 36124 btwnconn1lem6 36125 btwnconn1lem7 36126 btwnconn1lem12 36131 linethru 36186 2llnjN 39605 2lplnja 39657 2lplnj 39658 cdlemblem 39831 dalaw 39924 pclfinN 39938 lhpmcvr4N 40064 cdlemb2 40079 cdleme01N 40259 cdleme0ex2N 40262 cdleme7c 40283 cdlemefrs29bpre0 40434 cdlemefrs29cpre1 40436 cdlemefrs32fva1 40439 cdlemefs32sn1aw 40452 cdleme41sn3a 40471 cdleme48fv 40537 cdlemk21-2N 40929 dihmeetlem13N 41357 pellex 42867 lmhmfgsplit 43118 iunrelexpmin1 43740 |
| Copyright terms: Public domain | W3C validator |