| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2rr | ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8225 tfrlem5 8309 omeu 8510 gruina 10731 4sqlem18 16892 vdwlem10 16920 mdetuni0 22524 mdetmul 22526 tsmsxp 24058 ax5seglem3 28894 btwnconn1lem1 36060 btwnconn1lem3 36062 btwnconn1lem4 36063 btwnconn1lem5 36064 btwnconn1lem6 36065 btwnconn1lem7 36066 btwnconn1lem12 36071 linethru 36126 2llnjN 39546 2lplnja 39598 2lplnj 39599 cdlemblem 39772 dalaw 39865 pclfinN 39879 lhpmcvr4N 40005 cdlemb2 40020 cdleme01N 40200 cdleme0ex2N 40203 cdleme7c 40224 cdlemefrs29bpre0 40375 cdlemefrs29cpre1 40377 cdlemefrs32fva1 40380 cdlemefs32sn1aw 40393 cdleme41sn3a 40412 cdleme48fv 40478 cdlemk21-2N 40870 dihmeetlem13N 41298 pellex 42808 lmhmfgsplit 43059 iunrelexpmin1 43681 |
| Copyright terms: Public domain | W3C validator |