| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2rr | ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8284 tfrlem5 8394 omeu 8597 gruina 10832 4sqlem18 16982 vdwlem10 17010 mdetuni0 22559 mdetmul 22561 tsmsxp 24093 ax5seglem3 28910 btwnconn1lem1 36105 btwnconn1lem3 36107 btwnconn1lem4 36108 btwnconn1lem5 36109 btwnconn1lem6 36110 btwnconn1lem7 36111 btwnconn1lem12 36116 linethru 36171 2llnjN 39586 2lplnja 39638 2lplnj 39639 cdlemblem 39812 dalaw 39905 pclfinN 39919 lhpmcvr4N 40045 cdlemb2 40060 cdleme01N 40240 cdleme0ex2N 40243 cdleme7c 40264 cdlemefrs29bpre0 40415 cdlemefrs29cpre1 40417 cdlemefrs32fva1 40420 cdlemefs32sn1aw 40433 cdleme41sn3a 40452 cdleme48fv 40518 cdlemk21-2N 40910 dihmeetlem13N 41338 pellex 42858 lmhmfgsplit 43110 iunrelexpmin1 43732 |
| Copyright terms: Public domain | W3C validator |