![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2rr | ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 773 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant2 1133 | 1 ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: fpr3g 8309 tfrlem5 8419 omeu 8622 gruina 10856 4sqlem18 16996 vdwlem10 17024 mdetuni0 22643 mdetmul 22645 tsmsxp 24179 ax5seglem3 28961 btwnconn1lem1 36069 btwnconn1lem3 36071 btwnconn1lem4 36072 btwnconn1lem5 36073 btwnconn1lem6 36074 btwnconn1lem7 36075 btwnconn1lem12 36080 linethru 36135 2llnjN 39550 2lplnja 39602 2lplnj 39603 cdlemblem 39776 dalaw 39869 pclfinN 39883 lhpmcvr4N 40009 cdlemb2 40024 cdleme01N 40204 cdleme0ex2N 40207 cdleme7c 40228 cdlemefrs29bpre0 40379 cdlemefrs29cpre1 40381 cdlemefrs32fva1 40384 cdlemefs32sn1aw 40397 cdleme41sn3a 40416 cdleme48fv 40482 cdlemk21-2N 40874 dihmeetlem13N 41302 pellex 42823 lmhmfgsplit 43075 iunrelexpmin1 43698 |
Copyright terms: Public domain | W3C validator |