Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2rr | ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: fpr3g 8132 tfrlem5 8242 omeu 8447 gruina 10620 4sqlem18 16708 vdwlem10 16736 mdetuni0 21815 mdetmul 21817 tsmsxp 23351 ax5seglem3 27344 btwnconn1lem1 34434 btwnconn1lem3 34436 btwnconn1lem4 34437 btwnconn1lem5 34438 btwnconn1lem6 34439 btwnconn1lem7 34440 btwnconn1lem12 34445 linethru 34500 2llnjN 37623 2lplnja 37675 2lplnj 37676 cdlemblem 37849 dalaw 37942 pclfinN 37956 lhpmcvr4N 38082 cdlemb2 38097 cdleme01N 38277 cdleme0ex2N 38280 cdleme7c 38301 cdlemefrs29bpre0 38452 cdlemefrs29cpre1 38454 cdlemefrs32fva1 38457 cdlemefs32sn1aw 38470 cdleme41sn3a 38489 cdleme48fv 38555 cdlemk21-2N 38947 dihmeetlem13N 39375 pellex 40694 lmhmfgsplit 40949 iunrelexpmin1 41354 |
Copyright terms: Public domain | W3C validator |