| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2rr | ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8221 tfrlem5 8305 omeu 8506 gruina 10716 4sqlem18 16876 vdwlem10 16904 mdetuni0 22537 mdetmul 22539 tsmsxp 24071 ax5seglem3 28911 btwnconn1lem1 36152 btwnconn1lem3 36154 btwnconn1lem4 36155 btwnconn1lem5 36156 btwnconn1lem6 36157 btwnconn1lem7 36158 btwnconn1lem12 36163 linethru 36218 2llnjN 39686 2lplnja 39738 2lplnj 39739 cdlemblem 39912 dalaw 40005 pclfinN 40019 lhpmcvr4N 40145 cdlemb2 40160 cdleme01N 40340 cdleme0ex2N 40343 cdleme7c 40364 cdlemefrs29bpre0 40515 cdlemefrs29cpre1 40517 cdlemefrs32fva1 40520 cdlemefs32sn1aw 40533 cdleme41sn3a 40552 cdleme48fv 40618 cdlemk21-2N 41010 dihmeetlem13N 41438 pellex 42952 lmhmfgsplit 43203 iunrelexpmin1 43825 |
| Copyright terms: Public domain | W3C validator |