Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2rr | ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 769 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: fpr3g 8085 tfrlem5 8195 omeu 8392 gruina 10558 4sqlem18 16644 vdwlem10 16672 mdetuni0 21751 mdetmul 21753 tsmsxp 23287 ax5seglem3 27280 btwnconn1lem1 34368 btwnconn1lem3 34370 btwnconn1lem4 34371 btwnconn1lem5 34372 btwnconn1lem6 34373 btwnconn1lem7 34374 btwnconn1lem12 34379 linethru 34434 2llnjN 37560 2lplnja 37612 2lplnj 37613 cdlemblem 37786 dalaw 37879 pclfinN 37893 lhpmcvr4N 38019 cdlemb2 38034 cdleme01N 38214 cdleme0ex2N 38217 cdleme7c 38238 cdlemefrs29bpre0 38389 cdlemefrs29cpre1 38391 cdlemefrs32fva1 38394 cdlemefs32sn1aw 38407 cdleme41sn3a 38426 cdleme48fv 38492 cdlemk21-2N 38884 dihmeetlem13N 39312 pellex 40637 lmhmfgsplit 40891 iunrelexpmin1 41269 |
Copyright terms: Public domain | W3C validator |