![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2rr | ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: fpr3g 8326 tfrlem5 8436 omeu 8641 gruina 10887 4sqlem18 17009 vdwlem10 17037 mdetuni0 22648 mdetmul 22650 tsmsxp 24184 ax5seglem3 28964 btwnconn1lem1 36051 btwnconn1lem3 36053 btwnconn1lem4 36054 btwnconn1lem5 36055 btwnconn1lem6 36056 btwnconn1lem7 36057 btwnconn1lem12 36062 linethru 36117 2llnjN 39524 2lplnja 39576 2lplnj 39577 cdlemblem 39750 dalaw 39843 pclfinN 39857 lhpmcvr4N 39983 cdlemb2 39998 cdleme01N 40178 cdleme0ex2N 40181 cdleme7c 40202 cdlemefrs29bpre0 40353 cdlemefrs29cpre1 40355 cdlemefrs32fva1 40358 cdlemefs32sn1aw 40371 cdleme41sn3a 40390 cdleme48fv 40456 cdlemk21-2N 40848 dihmeetlem13N 41276 pellex 42791 lmhmfgsplit 43043 iunrelexpmin1 43670 |
Copyright terms: Public domain | W3C validator |