Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgsplit Structured version   Visualization version   GIF version

Theorem lmhmfgsplit 43125
Description: If the kernel and range of a homomorphism of left modules are finitely generated, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lmhmfgsplit.z 0 = (0g𝑇)
lmhmfgsplit.k 𝐾 = (𝐹 “ { 0 })
lmhmfgsplit.u 𝑈 = (𝑆s 𝐾)
lmhmfgsplit.v 𝑉 = (𝑇s ran 𝐹)
Assertion
Ref Expression
lmhmfgsplit ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen)

Proof of Theorem lmhmfgsplit
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑉 ∈ LFinGen)
2 lmhmlmod2 20967 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
323ad2ant1 1133 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑇 ∈ LMod)
4 lmhmrnlss 20985 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇))
543ad2ant1 1133 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → ran 𝐹 ∈ (LSubSp‘𝑇))
6 lmhmfgsplit.v . . . . 5 𝑉 = (𝑇s ran 𝐹)
7 eqid 2731 . . . . 5 (LSubSp‘𝑇) = (LSubSp‘𝑇)
8 eqid 2731 . . . . 5 (LSpan‘𝑇) = (LSpan‘𝑇)
96, 7, 8islssfg 43109 . . . 4 ((𝑇 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑇)) → (𝑉 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)))
103, 5, 9syl2anc 584 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → (𝑉 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)))
111, 10mpbid 232 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))
12 simpl1 1192 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
13 eqid 2731 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
14 eqid 2731 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
1513, 14lmhmf 20969 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
16 ffn 6651 . . . . 5 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
1712, 15, 163syl 18 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝐹 Fn (Base‘𝑆))
18 elpwi 4557 . . . . 5 (𝑎 ∈ 𝒫 ran 𝐹𝑎 ⊆ ran 𝐹)
1918ad2antrl 728 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑎 ⊆ ran 𝐹)
20 simprrl 780 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑎 ∈ Fin)
21 fipreima 9242 . . . 4 ((𝐹 Fn (Base‘𝑆) ∧ 𝑎 ⊆ ran 𝐹𝑎 ∈ Fin) → ∃𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin)(𝐹𝑏) = 𝑎)
2217, 19, 20, 21syl3anc 1373 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → ∃𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin)(𝐹𝑏) = 𝑎)
23 eqid 2731 . . . . . . 7 (LSubSp‘𝑆) = (LSubSp‘𝑆)
24 eqid 2731 . . . . . . 7 (LSSum‘𝑆) = (LSSum‘𝑆)
25 lmhmfgsplit.z . . . . . . 7 0 = (0g𝑇)
26 lmhmfgsplit.k . . . . . . 7 𝐾 = (𝐹 “ { 0 })
27 simpll1 1213 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
28 lmhmlmod1 20968 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
29283ad2ant1 1133 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LMod)
3029ad2antrr 726 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑆 ∈ LMod)
31 inss1 4187 . . . . . . . . . . 11 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫 (Base‘𝑆)
3231sseli 3930 . . . . . . . . . 10 (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑏 ∈ 𝒫 (Base‘𝑆))
33 elpwi 4557 . . . . . . . . . 10 (𝑏 ∈ 𝒫 (Base‘𝑆) → 𝑏 ⊆ (Base‘𝑆))
3432, 33syl 17 . . . . . . . . 9 (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑏 ⊆ (Base‘𝑆))
3534ad2antrl 728 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑏 ⊆ (Base‘𝑆))
36 eqid 2731 . . . . . . . . 9 (LSpan‘𝑆) = (LSpan‘𝑆)
3713, 23, 36lspcl 20910 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑆)) → ((LSpan‘𝑆)‘𝑏) ∈ (LSubSp‘𝑆))
3830, 35, 37syl2anc 584 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑆)‘𝑏) ∈ (LSubSp‘𝑆))
3913, 36, 8lmhmlsp 20984 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ((LSpan‘𝑇)‘(𝐹𝑏)))
4027, 35, 39syl2anc 584 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ((LSpan‘𝑇)‘(𝐹𝑏)))
41 fveq2 6822 . . . . . . . . 9 ((𝐹𝑏) = 𝑎 → ((LSpan‘𝑇)‘(𝐹𝑏)) = ((LSpan‘𝑇)‘𝑎))
4241ad2antll 729 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑇)‘(𝐹𝑏)) = ((LSpan‘𝑇)‘𝑎))
43 simp2rr 1244 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑇)‘𝑎) = ran 𝐹)
44433expa 1118 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑇)‘𝑎) = ran 𝐹)
4540, 42, 443eqtrd 2770 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ran 𝐹)
4623, 24, 25, 26, 13, 27, 38, 45kercvrlsm 43122 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏)) = (Base‘𝑆))
4746oveq2d 7362 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) = (𝑆s (Base‘𝑆)))
4813ressid 17155 . . . . . . 7 (𝑆 ∈ LMod → (𝑆s (Base‘𝑆)) = 𝑆)
4929, 48syl 17 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → (𝑆s (Base‘𝑆)) = 𝑆)
5049ad2antrr 726 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s (Base‘𝑆)) = 𝑆)
5147, 50eqtr2d 2767 . . . 4 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑆 = (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))))
52 lmhmfgsplit.u . . . . 5 𝑈 = (𝑆s 𝐾)
53 eqid 2731 . . . . 5 (𝑆s ((LSpan‘𝑆)‘𝑏)) = (𝑆s ((LSpan‘𝑆)‘𝑏))
54 eqid 2731 . . . . 5 (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) = (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏)))
5526, 25, 23lmhmkerlss 20986 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ (LSubSp‘𝑆))
56553ad2ant1 1133 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝐾 ∈ (LSubSp‘𝑆))
5756ad2antrr 726 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝐾 ∈ (LSubSp‘𝑆))
58 simpll2 1214 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑈 ∈ LFinGen)
59 inss2 4188 . . . . . . . 8 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin
6059sseli 3930 . . . . . . 7 (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑏 ∈ Fin)
6160ad2antrl 728 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑏 ∈ Fin)
6236, 13, 53islssfgi 43111 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑆) ∧ 𝑏 ∈ Fin) → (𝑆s ((LSpan‘𝑆)‘𝑏)) ∈ LFinGen)
6330, 35, 61, 62syl3anc 1373 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s ((LSpan‘𝑆)‘𝑏)) ∈ LFinGen)
6423, 24, 52, 53, 54, 30, 57, 38, 58, 63lsmfgcl 43113 . . . 4 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) ∈ LFinGen)
6551, 64eqeltrd 2831 . . 3 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑆 ∈ LFinGen)
6622, 65rexlimddv 3139 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑆 ∈ LFinGen)
6711, 66rexlimddv 3139 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cin 3901  wss 3902  𝒫 cpw 4550  {csn 4576  ccnv 5615  ran crn 5617  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  Basecbs 17120  s cress 17141  0gc0g 17343  LSSumclsm 19547  LModclmod 20794  LSubSpclss 20865  LSpanclspn 20905   LMHom clmhm 20954  LFinGenclfig 43106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-sca 17177  df-vsca 17178  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19126  df-cntz 19230  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lmhm 20957  df-lfig 43107
This theorem is referenced by:  lmhmlnmsplit  43126
  Copyright terms: Public domain W3C validator