Step | Hyp | Ref
| Expression |
1 | | simp3 1137 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑉 ∈ LFinGen) |
2 | | lmhmlmod2 20294 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
3 | 2 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑇 ∈ LMod) |
4 | | lmhmrnlss 20312 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇)) |
5 | 4 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → ran 𝐹 ∈ (LSubSp‘𝑇)) |
6 | | lmhmfgsplit.v |
. . . . 5
⊢ 𝑉 = (𝑇 ↾s ran 𝐹) |
7 | | eqid 2738 |
. . . . 5
⊢
(LSubSp‘𝑇) =
(LSubSp‘𝑇) |
8 | | eqid 2738 |
. . . . 5
⊢
(LSpan‘𝑇) =
(LSpan‘𝑇) |
9 | 6, 7, 8 | islssfg 40895 |
. . . 4
⊢ ((𝑇 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑇)) → (𝑉 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) |
10 | 3, 5, 9 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → (𝑉 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) |
11 | 1, 10 | mpbid 231 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)) |
12 | | simpl1 1190 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
13 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
14 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑇) =
(Base‘𝑇) |
15 | 13, 14 | lmhmf 20296 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
16 | | ffn 6600 |
. . . . 5
⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆)) |
17 | 12, 15, 16 | 3syl 18 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝐹 Fn (Base‘𝑆)) |
18 | | elpwi 4542 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 ran 𝐹 → 𝑎 ⊆ ran 𝐹) |
19 | 18 | ad2antrl 725 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑎 ⊆ ran 𝐹) |
20 | | simprrl 778 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑎 ∈ Fin) |
21 | | fipreima 9125 |
. . . 4
⊢ ((𝐹 Fn (Base‘𝑆) ∧ 𝑎 ⊆ ran 𝐹 ∧ 𝑎 ∈ Fin) → ∃𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin)(𝐹 “ 𝑏) = 𝑎) |
22 | 17, 19, 20, 21 | syl3anc 1370 |
. . 3
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → ∃𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin)(𝐹 “ 𝑏) = 𝑎) |
23 | | eqid 2738 |
. . . . . . 7
⊢
(LSubSp‘𝑆) =
(LSubSp‘𝑆) |
24 | | eqid 2738 |
. . . . . . 7
⊢
(LSSum‘𝑆) =
(LSSum‘𝑆) |
25 | | lmhmfgsplit.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑇) |
26 | | lmhmfgsplit.k |
. . . . . . 7
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
27 | | simpll1 1211 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
28 | | lmhmlmod1 20295 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
29 | 28 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LMod) |
30 | 29 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑆 ∈ LMod) |
31 | | inss1 4162 |
. . . . . . . . . . 11
⊢
(𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫
(Base‘𝑆) |
32 | 31 | sseli 3917 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝒫
(Base‘𝑆) ∩ Fin)
→ 𝑏 ∈ 𝒫
(Base‘𝑆)) |
33 | | elpwi 4542 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝒫
(Base‘𝑆) → 𝑏 ⊆ (Base‘𝑆)) |
34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝒫
(Base‘𝑆) ∩ Fin)
→ 𝑏 ⊆
(Base‘𝑆)) |
35 | 34 | ad2antrl 725 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑏 ⊆ (Base‘𝑆)) |
36 | | eqid 2738 |
. . . . . . . . 9
⊢
(LSpan‘𝑆) =
(LSpan‘𝑆) |
37 | 13, 23, 36 | lspcl 20238 |
. . . . . . . 8
⊢ ((𝑆 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑆)) → ((LSpan‘𝑆)‘𝑏) ∈ (LSubSp‘𝑆)) |
38 | 30, 35, 37 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → ((LSpan‘𝑆)‘𝑏) ∈ (LSubSp‘𝑆)) |
39 | 13, 36, 8 | lmhmlsp 20311 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ((LSpan‘𝑇)‘(𝐹 “ 𝑏))) |
40 | 27, 35, 39 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ((LSpan‘𝑇)‘(𝐹 “ 𝑏))) |
41 | | fveq2 6774 |
. . . . . . . . 9
⊢ ((𝐹 “ 𝑏) = 𝑎 → ((LSpan‘𝑇)‘(𝐹 “ 𝑏)) = ((LSpan‘𝑇)‘𝑎)) |
42 | 41 | ad2antll 726 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → ((LSpan‘𝑇)‘(𝐹 “ 𝑏)) = ((LSpan‘𝑇)‘𝑎)) |
43 | | simp2rr 1242 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → ((LSpan‘𝑇)‘𝑎) = ran 𝐹) |
44 | 43 | 3expa 1117 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → ((LSpan‘𝑇)‘𝑎) = ran 𝐹) |
45 | 40, 42, 44 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ran 𝐹) |
46 | 23, 24, 25, 26, 13, 27, 38, 45 | kercvrlsm 40908 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏)) = (Base‘𝑆)) |
47 | 46 | oveq2d 7291 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝑆 ↾s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) = (𝑆 ↾s (Base‘𝑆))) |
48 | 13 | ressid 16954 |
. . . . . . 7
⊢ (𝑆 ∈ LMod → (𝑆 ↾s
(Base‘𝑆)) = 𝑆) |
49 | 29, 48 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → (𝑆 ↾s (Base‘𝑆)) = 𝑆) |
50 | 49 | ad2antrr 723 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝑆 ↾s (Base‘𝑆)) = 𝑆) |
51 | 47, 50 | eqtr2d 2779 |
. . . 4
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑆 = (𝑆 ↾s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏)))) |
52 | | lmhmfgsplit.u |
. . . . 5
⊢ 𝑈 = (𝑆 ↾s 𝐾) |
53 | | eqid 2738 |
. . . . 5
⊢ (𝑆 ↾s
((LSpan‘𝑆)‘𝑏)) = (𝑆 ↾s ((LSpan‘𝑆)‘𝑏)) |
54 | | eqid 2738 |
. . . . 5
⊢ (𝑆 ↾s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) = (𝑆 ↾s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) |
55 | 26, 25, 23 | lmhmkerlss 20313 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ (LSubSp‘𝑆)) |
56 | 55 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝐾 ∈ (LSubSp‘𝑆)) |
57 | 56 | ad2antrr 723 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝐾 ∈ (LSubSp‘𝑆)) |
58 | | simpll2 1212 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑈 ∈ LFinGen) |
59 | | inss2 4163 |
. . . . . . . 8
⊢
(𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin |
60 | 59 | sseli 3917 |
. . . . . . 7
⊢ (𝑏 ∈ (𝒫
(Base‘𝑆) ∩ Fin)
→ 𝑏 ∈
Fin) |
61 | 60 | ad2antrl 725 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑏 ∈ Fin) |
62 | 36, 13, 53 | islssfgi 40897 |
. . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑆) ∧ 𝑏 ∈ Fin) → (𝑆 ↾s ((LSpan‘𝑆)‘𝑏)) ∈ LFinGen) |
63 | 30, 35, 61, 62 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝑆 ↾s ((LSpan‘𝑆)‘𝑏)) ∈ LFinGen) |
64 | 23, 24, 52, 53, 54, 30, 57, 38, 58, 63 | lsmfgcl 40899 |
. . . 4
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝑆 ↾s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) ∈ LFinGen) |
65 | 51, 64 | eqeltrd 2839 |
. . 3
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑆 ∈ LFinGen) |
66 | 22, 65 | rexlimddv 3220 |
. 2
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑆 ∈ LFinGen) |
67 | 11, 66 | rexlimddv 3220 |
1
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen) |