Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgsplit Structured version   Visualization version   GIF version

Theorem lmhmfgsplit 43206
Description: If the kernel and range of a homomorphism of left modules are finitely generated, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lmhmfgsplit.z 0 = (0g𝑇)
lmhmfgsplit.k 𝐾 = (𝐹 “ { 0 })
lmhmfgsplit.u 𝑈 = (𝑆s 𝐾)
lmhmfgsplit.v 𝑉 = (𝑇s ran 𝐹)
Assertion
Ref Expression
lmhmfgsplit ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen)

Proof of Theorem lmhmfgsplit
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑉 ∈ LFinGen)
2 lmhmlmod2 20970 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
323ad2ant1 1133 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑇 ∈ LMod)
4 lmhmrnlss 20988 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇))
543ad2ant1 1133 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → ran 𝐹 ∈ (LSubSp‘𝑇))
6 lmhmfgsplit.v . . . . 5 𝑉 = (𝑇s ran 𝐹)
7 eqid 2733 . . . . 5 (LSubSp‘𝑇) = (LSubSp‘𝑇)
8 eqid 2733 . . . . 5 (LSpan‘𝑇) = (LSpan‘𝑇)
96, 7, 8islssfg 43190 . . . 4 ((𝑇 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑇)) → (𝑉 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)))
103, 5, 9syl2anc 584 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → (𝑉 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)))
111, 10mpbid 232 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))
12 simpl1 1192 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
13 eqid 2733 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
14 eqid 2733 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
1513, 14lmhmf 20972 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
16 ffn 6658 . . . . 5 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
1712, 15, 163syl 18 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝐹 Fn (Base‘𝑆))
18 elpwi 4558 . . . . 5 (𝑎 ∈ 𝒫 ran 𝐹𝑎 ⊆ ran 𝐹)
1918ad2antrl 728 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑎 ⊆ ran 𝐹)
20 simprrl 780 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑎 ∈ Fin)
21 fipreima 9251 . . . 4 ((𝐹 Fn (Base‘𝑆) ∧ 𝑎 ⊆ ran 𝐹𝑎 ∈ Fin) → ∃𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin)(𝐹𝑏) = 𝑎)
2217, 19, 20, 21syl3anc 1373 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → ∃𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin)(𝐹𝑏) = 𝑎)
23 eqid 2733 . . . . . . 7 (LSubSp‘𝑆) = (LSubSp‘𝑆)
24 eqid 2733 . . . . . . 7 (LSSum‘𝑆) = (LSSum‘𝑆)
25 lmhmfgsplit.z . . . . . . 7 0 = (0g𝑇)
26 lmhmfgsplit.k . . . . . . 7 𝐾 = (𝐹 “ { 0 })
27 simpll1 1213 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
28 lmhmlmod1 20971 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
29283ad2ant1 1133 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LMod)
3029ad2antrr 726 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑆 ∈ LMod)
31 inss1 4186 . . . . . . . . . . 11 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫 (Base‘𝑆)
3231sseli 3926 . . . . . . . . . 10 (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑏 ∈ 𝒫 (Base‘𝑆))
33 elpwi 4558 . . . . . . . . . 10 (𝑏 ∈ 𝒫 (Base‘𝑆) → 𝑏 ⊆ (Base‘𝑆))
3432, 33syl 17 . . . . . . . . 9 (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑏 ⊆ (Base‘𝑆))
3534ad2antrl 728 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑏 ⊆ (Base‘𝑆))
36 eqid 2733 . . . . . . . . 9 (LSpan‘𝑆) = (LSpan‘𝑆)
3713, 23, 36lspcl 20913 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑆)) → ((LSpan‘𝑆)‘𝑏) ∈ (LSubSp‘𝑆))
3830, 35, 37syl2anc 584 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑆)‘𝑏) ∈ (LSubSp‘𝑆))
3913, 36, 8lmhmlsp 20987 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ((LSpan‘𝑇)‘(𝐹𝑏)))
4027, 35, 39syl2anc 584 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ((LSpan‘𝑇)‘(𝐹𝑏)))
41 fveq2 6830 . . . . . . . . 9 ((𝐹𝑏) = 𝑎 → ((LSpan‘𝑇)‘(𝐹𝑏)) = ((LSpan‘𝑇)‘𝑎))
4241ad2antll 729 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑇)‘(𝐹𝑏)) = ((LSpan‘𝑇)‘𝑎))
43 simp2rr 1244 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑇)‘𝑎) = ran 𝐹)
44433expa 1118 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑇)‘𝑎) = ran 𝐹)
4540, 42, 443eqtrd 2772 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ran 𝐹)
4623, 24, 25, 26, 13, 27, 38, 45kercvrlsm 43203 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏)) = (Base‘𝑆))
4746oveq2d 7370 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) = (𝑆s (Base‘𝑆)))
4813ressid 17159 . . . . . . 7 (𝑆 ∈ LMod → (𝑆s (Base‘𝑆)) = 𝑆)
4929, 48syl 17 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → (𝑆s (Base‘𝑆)) = 𝑆)
5049ad2antrr 726 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s (Base‘𝑆)) = 𝑆)
5147, 50eqtr2d 2769 . . . 4 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑆 = (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))))
52 lmhmfgsplit.u . . . . 5 𝑈 = (𝑆s 𝐾)
53 eqid 2733 . . . . 5 (𝑆s ((LSpan‘𝑆)‘𝑏)) = (𝑆s ((LSpan‘𝑆)‘𝑏))
54 eqid 2733 . . . . 5 (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) = (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏)))
5526, 25, 23lmhmkerlss 20989 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ (LSubSp‘𝑆))
56553ad2ant1 1133 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝐾 ∈ (LSubSp‘𝑆))
5756ad2antrr 726 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝐾 ∈ (LSubSp‘𝑆))
58 simpll2 1214 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑈 ∈ LFinGen)
59 inss2 4187 . . . . . . . 8 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin
6059sseli 3926 . . . . . . 7 (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑏 ∈ Fin)
6160ad2antrl 728 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑏 ∈ Fin)
6236, 13, 53islssfgi 43192 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑆) ∧ 𝑏 ∈ Fin) → (𝑆s ((LSpan‘𝑆)‘𝑏)) ∈ LFinGen)
6330, 35, 61, 62syl3anc 1373 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s ((LSpan‘𝑆)‘𝑏)) ∈ LFinGen)
6423, 24, 52, 53, 54, 30, 57, 38, 58, 63lsmfgcl 43194 . . . 4 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) ∈ LFinGen)
6551, 64eqeltrd 2833 . . 3 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑆 ∈ LFinGen)
6622, 65rexlimddv 3140 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑆 ∈ LFinGen)
6711, 66rexlimddv 3140 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  cin 3897  wss 3898  𝒫 cpw 4551  {csn 4577  ccnv 5620  ran crn 5622  cima 5624   Fn wfn 6483  wf 6484  cfv 6488  (class class class)co 7354  Fincfn 8877  Basecbs 17124  s cress 17145  0gc0g 17347  LSSumclsm 19550  LModclmod 20797  LSubSpclss 20868  LSpanclspn 20908   LMHom clmhm 20957  LFinGenclfig 43187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-sca 17181  df-vsca 17182  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-subg 19040  df-ghm 19129  df-cntz 19233  df-lsm 19552  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-lmod 20799  df-lss 20869  df-lsp 20909  df-lmhm 20960  df-lfig 43188
This theorem is referenced by:  lmhmlnmsplit  43207
  Copyright terms: Public domain W3C validator