Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgsplit Structured version   Visualization version   GIF version

Theorem lmhmfgsplit 40827
Description: If the kernel and range of a homomorphism of left modules are finitely generated, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lmhmfgsplit.z 0 = (0g𝑇)
lmhmfgsplit.k 𝐾 = (𝐹 “ { 0 })
lmhmfgsplit.u 𝑈 = (𝑆s 𝐾)
lmhmfgsplit.v 𝑉 = (𝑇s ran 𝐹)
Assertion
Ref Expression
lmhmfgsplit ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen)

Proof of Theorem lmhmfgsplit
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1136 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑉 ∈ LFinGen)
2 lmhmlmod2 20209 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
323ad2ant1 1131 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑇 ∈ LMod)
4 lmhmrnlss 20227 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇))
543ad2ant1 1131 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → ran 𝐹 ∈ (LSubSp‘𝑇))
6 lmhmfgsplit.v . . . . 5 𝑉 = (𝑇s ran 𝐹)
7 eqid 2738 . . . . 5 (LSubSp‘𝑇) = (LSubSp‘𝑇)
8 eqid 2738 . . . . 5 (LSpan‘𝑇) = (LSpan‘𝑇)
96, 7, 8islssfg 40811 . . . 4 ((𝑇 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑇)) → (𝑉 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)))
103, 5, 9syl2anc 583 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → (𝑉 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)))
111, 10mpbid 231 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))
12 simpl1 1189 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
13 eqid 2738 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
14 eqid 2738 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
1513, 14lmhmf 20211 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
16 ffn 6584 . . . . 5 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
1712, 15, 163syl 18 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝐹 Fn (Base‘𝑆))
18 elpwi 4539 . . . . 5 (𝑎 ∈ 𝒫 ran 𝐹𝑎 ⊆ ran 𝐹)
1918ad2antrl 724 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑎 ⊆ ran 𝐹)
20 simprrl 777 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑎 ∈ Fin)
21 fipreima 9055 . . . 4 ((𝐹 Fn (Base‘𝑆) ∧ 𝑎 ⊆ ran 𝐹𝑎 ∈ Fin) → ∃𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin)(𝐹𝑏) = 𝑎)
2217, 19, 20, 21syl3anc 1369 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → ∃𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin)(𝐹𝑏) = 𝑎)
23 eqid 2738 . . . . . . 7 (LSubSp‘𝑆) = (LSubSp‘𝑆)
24 eqid 2738 . . . . . . 7 (LSSum‘𝑆) = (LSSum‘𝑆)
25 lmhmfgsplit.z . . . . . . 7 0 = (0g𝑇)
26 lmhmfgsplit.k . . . . . . 7 𝐾 = (𝐹 “ { 0 })
27 simpll1 1210 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
28 lmhmlmod1 20210 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
29283ad2ant1 1131 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LMod)
3029ad2antrr 722 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑆 ∈ LMod)
31 inss1 4159 . . . . . . . . . . 11 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫 (Base‘𝑆)
3231sseli 3913 . . . . . . . . . 10 (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑏 ∈ 𝒫 (Base‘𝑆))
33 elpwi 4539 . . . . . . . . . 10 (𝑏 ∈ 𝒫 (Base‘𝑆) → 𝑏 ⊆ (Base‘𝑆))
3432, 33syl 17 . . . . . . . . 9 (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑏 ⊆ (Base‘𝑆))
3534ad2antrl 724 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑏 ⊆ (Base‘𝑆))
36 eqid 2738 . . . . . . . . 9 (LSpan‘𝑆) = (LSpan‘𝑆)
3713, 23, 36lspcl 20153 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑆)) → ((LSpan‘𝑆)‘𝑏) ∈ (LSubSp‘𝑆))
3830, 35, 37syl2anc 583 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑆)‘𝑏) ∈ (LSubSp‘𝑆))
3913, 36, 8lmhmlsp 20226 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ((LSpan‘𝑇)‘(𝐹𝑏)))
4027, 35, 39syl2anc 583 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ((LSpan‘𝑇)‘(𝐹𝑏)))
41 fveq2 6756 . . . . . . . . 9 ((𝐹𝑏) = 𝑎 → ((LSpan‘𝑇)‘(𝐹𝑏)) = ((LSpan‘𝑇)‘𝑎))
4241ad2antll 725 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑇)‘(𝐹𝑏)) = ((LSpan‘𝑇)‘𝑎))
43 simp2rr 1241 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑇)‘𝑎) = ran 𝐹)
44433expa 1116 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → ((LSpan‘𝑇)‘𝑎) = ran 𝐹)
4540, 42, 443eqtrd 2782 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ran 𝐹)
4623, 24, 25, 26, 13, 27, 38, 45kercvrlsm 40824 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏)) = (Base‘𝑆))
4746oveq2d 7271 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) = (𝑆s (Base‘𝑆)))
4813ressid 16880 . . . . . . 7 (𝑆 ∈ LMod → (𝑆s (Base‘𝑆)) = 𝑆)
4929, 48syl 17 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → (𝑆s (Base‘𝑆)) = 𝑆)
5049ad2antrr 722 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s (Base‘𝑆)) = 𝑆)
5147, 50eqtr2d 2779 . . . 4 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑆 = (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))))
52 lmhmfgsplit.u . . . . 5 𝑈 = (𝑆s 𝐾)
53 eqid 2738 . . . . 5 (𝑆s ((LSpan‘𝑆)‘𝑏)) = (𝑆s ((LSpan‘𝑆)‘𝑏))
54 eqid 2738 . . . . 5 (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) = (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏)))
5526, 25, 23lmhmkerlss 20228 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ (LSubSp‘𝑆))
56553ad2ant1 1131 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝐾 ∈ (LSubSp‘𝑆))
5756ad2antrr 722 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝐾 ∈ (LSubSp‘𝑆))
58 simpll2 1211 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑈 ∈ LFinGen)
59 inss2 4160 . . . . . . . 8 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin
6059sseli 3913 . . . . . . 7 (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑏 ∈ Fin)
6160ad2antrl 724 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑏 ∈ Fin)
6236, 13, 53islssfgi 40813 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑆) ∧ 𝑏 ∈ Fin) → (𝑆s ((LSpan‘𝑆)‘𝑏)) ∈ LFinGen)
6330, 35, 61, 62syl3anc 1369 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s ((LSpan‘𝑆)‘𝑏)) ∈ LFinGen)
6423, 24, 52, 53, 54, 30, 57, 38, 58, 63lsmfgcl 40815 . . . 4 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → (𝑆s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) ∈ LFinGen)
6551, 64eqeltrd 2839 . . 3 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹𝑏) = 𝑎)) → 𝑆 ∈ LFinGen)
6622, 65rexlimddv 3219 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑆 ∈ LFinGen)
6711, 66rexlimddv 3219 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558  ccnv 5579  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840  s cress 16867  0gc0g 17067  LSSumclsm 19154  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148   LMHom clmhm 20196  LFinGenclfig 40808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-sca 16904  df-vsca 16905  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lmhm 20199  df-lfig 40809
This theorem is referenced by:  lmhmlnmsplit  40828
  Copyright terms: Public domain W3C validator