| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1138 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑉 ∈ LFinGen) |
| 2 | | lmhmlmod2 20995 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
| 3 | 2 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑇 ∈ LMod) |
| 4 | | lmhmrnlss 21013 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇)) |
| 5 | 4 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → ran 𝐹 ∈ (LSubSp‘𝑇)) |
| 6 | | lmhmfgsplit.v |
. . . . 5
⊢ 𝑉 = (𝑇 ↾s ran 𝐹) |
| 7 | | eqid 2736 |
. . . . 5
⊢
(LSubSp‘𝑇) =
(LSubSp‘𝑇) |
| 8 | | eqid 2736 |
. . . . 5
⊢
(LSpan‘𝑇) =
(LSpan‘𝑇) |
| 9 | 6, 7, 8 | islssfg 43061 |
. . . 4
⊢ ((𝑇 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑇)) → (𝑉 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) |
| 10 | 3, 5, 9 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → (𝑉 ∈ LFinGen ↔ ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) |
| 11 | 1, 10 | mpbid 232 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → ∃𝑎 ∈ 𝒫 ran 𝐹(𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)) |
| 12 | | simpl1 1192 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 13 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 14 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 15 | 13, 14 | lmhmf 20997 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 16 | | ffn 6711 |
. . . . 5
⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆)) |
| 17 | 12, 15, 16 | 3syl 18 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝐹 Fn (Base‘𝑆)) |
| 18 | | elpwi 4587 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 ran 𝐹 → 𝑎 ⊆ ran 𝐹) |
| 19 | 18 | ad2antrl 728 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑎 ⊆ ran 𝐹) |
| 20 | | simprrl 780 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑎 ∈ Fin) |
| 21 | | fipreima 9375 |
. . . 4
⊢ ((𝐹 Fn (Base‘𝑆) ∧ 𝑎 ⊆ ran 𝐹 ∧ 𝑎 ∈ Fin) → ∃𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin)(𝐹 “ 𝑏) = 𝑎) |
| 22 | 17, 19, 20, 21 | syl3anc 1373 |
. . 3
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → ∃𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin)(𝐹 “ 𝑏) = 𝑎) |
| 23 | | eqid 2736 |
. . . . . . 7
⊢
(LSubSp‘𝑆) =
(LSubSp‘𝑆) |
| 24 | | eqid 2736 |
. . . . . . 7
⊢
(LSSum‘𝑆) =
(LSSum‘𝑆) |
| 25 | | lmhmfgsplit.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑇) |
| 26 | | lmhmfgsplit.k |
. . . . . . 7
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| 27 | | simpll1 1213 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 28 | | lmhmlmod1 20996 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| 29 | 28 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LMod) |
| 30 | 29 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑆 ∈ LMod) |
| 31 | | inss1 4217 |
. . . . . . . . . . 11
⊢
(𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫
(Base‘𝑆) |
| 32 | 31 | sseli 3959 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝒫
(Base‘𝑆) ∩ Fin)
→ 𝑏 ∈ 𝒫
(Base‘𝑆)) |
| 33 | | elpwi 4587 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝒫
(Base‘𝑆) → 𝑏 ⊆ (Base‘𝑆)) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝒫
(Base‘𝑆) ∩ Fin)
→ 𝑏 ⊆
(Base‘𝑆)) |
| 35 | 34 | ad2antrl 728 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑏 ⊆ (Base‘𝑆)) |
| 36 | | eqid 2736 |
. . . . . . . . 9
⊢
(LSpan‘𝑆) =
(LSpan‘𝑆) |
| 37 | 13, 23, 36 | lspcl 20938 |
. . . . . . . 8
⊢ ((𝑆 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑆)) → ((LSpan‘𝑆)‘𝑏) ∈ (LSubSp‘𝑆)) |
| 38 | 30, 35, 37 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → ((LSpan‘𝑆)‘𝑏) ∈ (LSubSp‘𝑆)) |
| 39 | 13, 36, 8 | lmhmlsp 21012 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ((LSpan‘𝑇)‘(𝐹 “ 𝑏))) |
| 40 | 27, 35, 39 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ((LSpan‘𝑇)‘(𝐹 “ 𝑏))) |
| 41 | | fveq2 6881 |
. . . . . . . . 9
⊢ ((𝐹 “ 𝑏) = 𝑎 → ((LSpan‘𝑇)‘(𝐹 “ 𝑏)) = ((LSpan‘𝑇)‘𝑎)) |
| 42 | 41 | ad2antll 729 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → ((LSpan‘𝑇)‘(𝐹 “ 𝑏)) = ((LSpan‘𝑇)‘𝑎)) |
| 43 | | simp2rr 1244 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹)) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → ((LSpan‘𝑇)‘𝑎) = ran 𝐹) |
| 44 | 43 | 3expa 1118 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → ((LSpan‘𝑇)‘𝑎) = ran 𝐹) |
| 45 | 40, 42, 44 | 3eqtrd 2775 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝐹 “ ((LSpan‘𝑆)‘𝑏)) = ran 𝐹) |
| 46 | 23, 24, 25, 26, 13, 27, 38, 45 | kercvrlsm 43074 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏)) = (Base‘𝑆)) |
| 47 | 46 | oveq2d 7426 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝑆 ↾s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) = (𝑆 ↾s (Base‘𝑆))) |
| 48 | 13 | ressid 17270 |
. . . . . . 7
⊢ (𝑆 ∈ LMod → (𝑆 ↾s
(Base‘𝑆)) = 𝑆) |
| 49 | 29, 48 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → (𝑆 ↾s (Base‘𝑆)) = 𝑆) |
| 50 | 49 | ad2antrr 726 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝑆 ↾s (Base‘𝑆)) = 𝑆) |
| 51 | 47, 50 | eqtr2d 2772 |
. . . 4
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑆 = (𝑆 ↾s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏)))) |
| 52 | | lmhmfgsplit.u |
. . . . 5
⊢ 𝑈 = (𝑆 ↾s 𝐾) |
| 53 | | eqid 2736 |
. . . . 5
⊢ (𝑆 ↾s
((LSpan‘𝑆)‘𝑏)) = (𝑆 ↾s ((LSpan‘𝑆)‘𝑏)) |
| 54 | | eqid 2736 |
. . . . 5
⊢ (𝑆 ↾s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) = (𝑆 ↾s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) |
| 55 | 26, 25, 23 | lmhmkerlss 21014 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ (LSubSp‘𝑆)) |
| 56 | 55 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝐾 ∈ (LSubSp‘𝑆)) |
| 57 | 56 | ad2antrr 726 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝐾 ∈ (LSubSp‘𝑆)) |
| 58 | | simpll2 1214 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑈 ∈ LFinGen) |
| 59 | | inss2 4218 |
. . . . . . . 8
⊢
(𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin |
| 60 | 59 | sseli 3959 |
. . . . . . 7
⊢ (𝑏 ∈ (𝒫
(Base‘𝑆) ∩ Fin)
→ 𝑏 ∈
Fin) |
| 61 | 60 | ad2antrl 728 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑏 ∈ Fin) |
| 62 | 36, 13, 53 | islssfgi 43063 |
. . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑆) ∧ 𝑏 ∈ Fin) → (𝑆 ↾s ((LSpan‘𝑆)‘𝑏)) ∈ LFinGen) |
| 63 | 30, 35, 61, 62 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝑆 ↾s ((LSpan‘𝑆)‘𝑏)) ∈ LFinGen) |
| 64 | 23, 24, 52, 53, 54, 30, 57, 38, 58, 63 | lsmfgcl 43065 |
. . . 4
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → (𝑆 ↾s (𝐾(LSSum‘𝑆)((LSpan‘𝑆)‘𝑏))) ∈ LFinGen) |
| 65 | 51, 64 | eqeltrd 2835 |
. . 3
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Base‘𝑆) ∩ Fin) ∧ (𝐹 “ 𝑏) = 𝑎)) → 𝑆 ∈ LFinGen) |
| 66 | 22, 65 | rexlimddv 3148 |
. 2
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (𝑎 ∈ 𝒫 ran 𝐹 ∧ (𝑎 ∈ Fin ∧ ((LSpan‘𝑇)‘𝑎) = ran 𝐹))) → 𝑆 ∈ LFinGen) |
| 67 | 11, 66 | rexlimddv 3148 |
1
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen) |