Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgsplit Structured version   Visualization version   GIF version

Theorem lmhmfgsplit 41814
Description: If the kernel and range of a homomorphism of left modules are finitely generated, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lmhmfgsplit.z 0 = (0gβ€˜π‘‡)
lmhmfgsplit.k 𝐾 = (◑𝐹 β€œ { 0 })
lmhmfgsplit.u π‘ˆ = (𝑆 β†Ύs 𝐾)
lmhmfgsplit.v 𝑉 = (𝑇 β†Ύs ran 𝐹)
Assertion
Ref Expression
lmhmfgsplit ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) β†’ 𝑆 ∈ LFinGen)

Proof of Theorem lmhmfgsplit
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1139 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) β†’ 𝑉 ∈ LFinGen)
2 lmhmlmod2 20636 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ 𝑇 ∈ LMod)
323ad2ant1 1134 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) β†’ 𝑇 ∈ LMod)
4 lmhmrnlss 20654 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ ran 𝐹 ∈ (LSubSpβ€˜π‘‡))
543ad2ant1 1134 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) β†’ ran 𝐹 ∈ (LSubSpβ€˜π‘‡))
6 lmhmfgsplit.v . . . . 5 𝑉 = (𝑇 β†Ύs ran 𝐹)
7 eqid 2733 . . . . 5 (LSubSpβ€˜π‘‡) = (LSubSpβ€˜π‘‡)
8 eqid 2733 . . . . 5 (LSpanβ€˜π‘‡) = (LSpanβ€˜π‘‡)
96, 7, 8islssfg 41798 . . . 4 ((𝑇 ∈ LMod ∧ ran 𝐹 ∈ (LSubSpβ€˜π‘‡)) β†’ (𝑉 ∈ LFinGen ↔ βˆƒπ‘Ž ∈ 𝒫 ran 𝐹(π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹)))
103, 5, 9syl2anc 585 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) β†’ (𝑉 ∈ LFinGen ↔ βˆƒπ‘Ž ∈ 𝒫 ran 𝐹(π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹)))
111, 10mpbid 231 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) β†’ βˆƒπ‘Ž ∈ 𝒫 ran 𝐹(π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))
12 simpl1 1192 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) β†’ 𝐹 ∈ (𝑆 LMHom 𝑇))
13 eqid 2733 . . . . . 6 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
14 eqid 2733 . . . . . 6 (Baseβ€˜π‘‡) = (Baseβ€˜π‘‡)
1513, 14lmhmf 20638 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ 𝐹:(Baseβ€˜π‘†)⟢(Baseβ€˜π‘‡))
16 ffn 6715 . . . . 5 (𝐹:(Baseβ€˜π‘†)⟢(Baseβ€˜π‘‡) β†’ 𝐹 Fn (Baseβ€˜π‘†))
1712, 15, 163syl 18 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) β†’ 𝐹 Fn (Baseβ€˜π‘†))
18 elpwi 4609 . . . . 5 (π‘Ž ∈ 𝒫 ran 𝐹 β†’ π‘Ž βŠ† ran 𝐹)
1918ad2antrl 727 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) β†’ π‘Ž βŠ† ran 𝐹)
20 simprrl 780 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) β†’ π‘Ž ∈ Fin)
21 fipreima 9355 . . . 4 ((𝐹 Fn (Baseβ€˜π‘†) ∧ π‘Ž βŠ† ran 𝐹 ∧ π‘Ž ∈ Fin) β†’ βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin)(𝐹 β€œ 𝑏) = π‘Ž)
2217, 19, 20, 21syl3anc 1372 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) β†’ βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin)(𝐹 β€œ 𝑏) = π‘Ž)
23 eqid 2733 . . . . . . 7 (LSubSpβ€˜π‘†) = (LSubSpβ€˜π‘†)
24 eqid 2733 . . . . . . 7 (LSSumβ€˜π‘†) = (LSSumβ€˜π‘†)
25 lmhmfgsplit.z . . . . . . 7 0 = (0gβ€˜π‘‡)
26 lmhmfgsplit.k . . . . . . 7 𝐾 = (◑𝐹 β€œ { 0 })
27 simpll1 1213 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ 𝐹 ∈ (𝑆 LMHom 𝑇))
28 lmhmlmod1 20637 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ 𝑆 ∈ LMod)
29283ad2ant1 1134 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) β†’ 𝑆 ∈ LMod)
3029ad2antrr 725 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ 𝑆 ∈ LMod)
31 inss1 4228 . . . . . . . . . . 11 (𝒫 (Baseβ€˜π‘†) ∩ Fin) βŠ† 𝒫 (Baseβ€˜π‘†)
3231sseli 3978 . . . . . . . . . 10 (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) β†’ 𝑏 ∈ 𝒫 (Baseβ€˜π‘†))
33 elpwi 4609 . . . . . . . . . 10 (𝑏 ∈ 𝒫 (Baseβ€˜π‘†) β†’ 𝑏 βŠ† (Baseβ€˜π‘†))
3432, 33syl 17 . . . . . . . . 9 (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) β†’ 𝑏 βŠ† (Baseβ€˜π‘†))
3534ad2antrl 727 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ 𝑏 βŠ† (Baseβ€˜π‘†))
36 eqid 2733 . . . . . . . . 9 (LSpanβ€˜π‘†) = (LSpanβ€˜π‘†)
3713, 23, 36lspcl 20580 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑏 βŠ† (Baseβ€˜π‘†)) β†’ ((LSpanβ€˜π‘†)β€˜π‘) ∈ (LSubSpβ€˜π‘†))
3830, 35, 37syl2anc 585 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ ((LSpanβ€˜π‘†)β€˜π‘) ∈ (LSubSpβ€˜π‘†))
3913, 36, 8lmhmlsp 20653 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑏 βŠ† (Baseβ€˜π‘†)) β†’ (𝐹 β€œ ((LSpanβ€˜π‘†)β€˜π‘)) = ((LSpanβ€˜π‘‡)β€˜(𝐹 β€œ 𝑏)))
4027, 35, 39syl2anc 585 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ (𝐹 β€œ ((LSpanβ€˜π‘†)β€˜π‘)) = ((LSpanβ€˜π‘‡)β€˜(𝐹 β€œ 𝑏)))
41 fveq2 6889 . . . . . . . . 9 ((𝐹 β€œ 𝑏) = π‘Ž β†’ ((LSpanβ€˜π‘‡)β€˜(𝐹 β€œ 𝑏)) = ((LSpanβ€˜π‘‡)β€˜π‘Ž))
4241ad2antll 728 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ ((LSpanβ€˜π‘‡)β€˜(𝐹 β€œ 𝑏)) = ((LSpanβ€˜π‘‡)β€˜π‘Ž))
43 simp2rr 1244 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹)) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹)
44433expa 1119 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹)
4540, 42, 443eqtrd 2777 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ (𝐹 β€œ ((LSpanβ€˜π‘†)β€˜π‘)) = ran 𝐹)
4623, 24, 25, 26, 13, 27, 38, 45kercvrlsm 41811 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ (𝐾(LSSumβ€˜π‘†)((LSpanβ€˜π‘†)β€˜π‘)) = (Baseβ€˜π‘†))
4746oveq2d 7422 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ (𝑆 β†Ύs (𝐾(LSSumβ€˜π‘†)((LSpanβ€˜π‘†)β€˜π‘))) = (𝑆 β†Ύs (Baseβ€˜π‘†)))
4813ressid 17186 . . . . . . 7 (𝑆 ∈ LMod β†’ (𝑆 β†Ύs (Baseβ€˜π‘†)) = 𝑆)
4929, 48syl 17 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) β†’ (𝑆 β†Ύs (Baseβ€˜π‘†)) = 𝑆)
5049ad2antrr 725 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ (𝑆 β†Ύs (Baseβ€˜π‘†)) = 𝑆)
5147, 50eqtr2d 2774 . . . 4 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ 𝑆 = (𝑆 β†Ύs (𝐾(LSSumβ€˜π‘†)((LSpanβ€˜π‘†)β€˜π‘))))
52 lmhmfgsplit.u . . . . 5 π‘ˆ = (𝑆 β†Ύs 𝐾)
53 eqid 2733 . . . . 5 (𝑆 β†Ύs ((LSpanβ€˜π‘†)β€˜π‘)) = (𝑆 β†Ύs ((LSpanβ€˜π‘†)β€˜π‘))
54 eqid 2733 . . . . 5 (𝑆 β†Ύs (𝐾(LSSumβ€˜π‘†)((LSpanβ€˜π‘†)β€˜π‘))) = (𝑆 β†Ύs (𝐾(LSSumβ€˜π‘†)((LSpanβ€˜π‘†)β€˜π‘)))
5526, 25, 23lmhmkerlss 20655 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ 𝐾 ∈ (LSubSpβ€˜π‘†))
56553ad2ant1 1134 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) β†’ 𝐾 ∈ (LSubSpβ€˜π‘†))
5756ad2antrr 725 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ 𝐾 ∈ (LSubSpβ€˜π‘†))
58 simpll2 1214 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ π‘ˆ ∈ LFinGen)
59 inss2 4229 . . . . . . . 8 (𝒫 (Baseβ€˜π‘†) ∩ Fin) βŠ† Fin
6059sseli 3978 . . . . . . 7 (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) β†’ 𝑏 ∈ Fin)
6160ad2antrl 727 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ 𝑏 ∈ Fin)
6236, 13, 53islssfgi 41800 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝑏 βŠ† (Baseβ€˜π‘†) ∧ 𝑏 ∈ Fin) β†’ (𝑆 β†Ύs ((LSpanβ€˜π‘†)β€˜π‘)) ∈ LFinGen)
6330, 35, 61, 62syl3anc 1372 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ (𝑆 β†Ύs ((LSpanβ€˜π‘†)β€˜π‘)) ∈ LFinGen)
6423, 24, 52, 53, 54, 30, 57, 38, 58, 63lsmfgcl 41802 . . . 4 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ (𝑆 β†Ύs (𝐾(LSSumβ€˜π‘†)((LSpanβ€˜π‘†)β€˜π‘))) ∈ LFinGen)
6551, 64eqeltrd 2834 . . 3 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) ∧ (𝑏 ∈ (𝒫 (Baseβ€˜π‘†) ∩ Fin) ∧ (𝐹 β€œ 𝑏) = π‘Ž)) β†’ 𝑆 ∈ LFinGen)
6622, 65rexlimddv 3162 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) ∧ (π‘Ž ∈ 𝒫 ran 𝐹 ∧ (π‘Ž ∈ Fin ∧ ((LSpanβ€˜π‘‡)β€˜π‘Ž) = ran 𝐹))) β†’ 𝑆 ∈ LFinGen)
6711, 66rexlimddv 3162 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ π‘ˆ ∈ LFinGen ∧ 𝑉 ∈ LFinGen) β†’ 𝑆 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602  {csn 4628  β—‘ccnv 5675  ran crn 5677   β€œ cima 5679   Fn wfn 6536  βŸΆwf 6537  β€˜cfv 6541  (class class class)co 7406  Fincfn 8936  Basecbs 17141   β†Ύs cress 17170  0gc0g 17382  LSSumclsm 19497  LModclmod 20464  LSubSpclss 20535  LSpanclspn 20575   LMHom clmhm 20623  LFinGenclfig 41795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-sca 17210  df-vsca 17211  df-0g 17384  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-submnd 18669  df-grp 18819  df-minusg 18820  df-sbg 18821  df-subg 18998  df-ghm 19085  df-cntz 19176  df-lsm 19499  df-cmn 19645  df-abl 19646  df-mgp 19983  df-ur 20000  df-ring 20052  df-lmod 20466  df-lss 20536  df-lsp 20576  df-lmhm 20626  df-lfig 41796
This theorem is referenced by:  lmhmlnmsplit  41815
  Copyright terms: Public domain W3C validator