Step | Hyp | Ref
| Expression |
1 | | cdleme4.u |
. . . 4
β’ π = ((π β¨ π) β§ π) |
2 | | cdleme7.v |
. . . 4
β’ π = ((π
β¨ π) β§ π) |
3 | 1, 2 | oveq12i 7370 |
. . 3
β’ (π β§ π) = (((π β¨ π) β§ π) β§ ((π
β¨ π) β§ π)) |
4 | | simp11 1204 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΎ β HL β§ π β π»)) |
5 | | simp12l 1287 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
6 | | simp13 1206 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
7 | | simp2l 1200 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β π΄ β§ Β¬ π
β€ π)) |
8 | | simp32 1211 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β€ (π β¨ π)) |
9 | | cdleme4.l |
. . . . . . . . 9
β’ β€ =
(leβπΎ) |
10 | | cdleme4.j |
. . . . . . . . 9
β’ β¨ =
(joinβπΎ) |
11 | | cdleme4.m |
. . . . . . . . 9
β’ β§ =
(meetβπΎ) |
12 | | cdleme4.a |
. . . . . . . . 9
β’ π΄ = (AtomsβπΎ) |
13 | | cdleme4.h |
. . . . . . . . 9
β’ π» = (LHypβπΎ) |
14 | 9, 10, 11, 12, 13, 1 | cdleme4 38704 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄ β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ π
β€ (π β¨ π)) β (π β¨ π) = (π
β¨ π)) |
15 | 4, 5, 6, 7, 8, 14 | syl131anc 1384 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β¨ π) = (π
β¨ π)) |
16 | 15 | oveq1d 7373 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π β¨ π) β§ (π
β¨ π)) = ((π
β¨ π) β§ (π
β¨ π))) |
17 | | simp11l 1285 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β HL) |
18 | | simp12 1205 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
19 | | simp31 1210 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π) |
20 | 9, 10, 11, 12, 13, 1 | lhpat2 38511 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
21 | 4, 18, 6, 19, 20 | syl112anc 1375 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
22 | | simp2rl 1243 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
23 | | simp2ll 1241 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β π΄) |
24 | 17 | hllatd 37829 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β Lat) |
25 | | eqid 2737 |
. . . . . . . . . . . 12
β’
(BaseβπΎ) =
(BaseβπΎ) |
26 | 25, 10, 12 | hlatjcl 37832 |
. . . . . . . . . . 11
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
27 | 17, 5, 6, 26 | syl3anc 1372 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β¨ π) β (BaseβπΎ)) |
28 | | simp11r 1286 |
. . . . . . . . . . 11
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π») |
29 | 25, 13 | lhpbase 38464 |
. . . . . . . . . . 11
β’ (π β π» β π β (BaseβπΎ)) |
30 | 28, 29 | syl 17 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β (BaseβπΎ)) |
31 | 25, 9, 11 | latmle2 18355 |
. . . . . . . . . 10
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π) β§ π) β€ π) |
32 | 24, 27, 30, 31 | syl3anc 1372 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π β¨ π) β§ π) β€ π) |
33 | 1, 32 | eqbrtrid 5141 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β€ π) |
34 | | simp2rr 1244 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ π) |
35 | | nbrne2 5126 |
. . . . . . . 8
β’ ((π β€ π β§ Β¬ π β€ π) β π β π) |
36 | 33, 34, 35 | syl2anc 585 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π) |
37 | | cdleme4.f |
. . . . . . . 8
β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) |
38 | | cdleme4.g |
. . . . . . . 8
β’ πΊ = ((π β¨ π) β§ (πΉ β¨ ((π
β¨ π) β§ π))) |
39 | 9, 10, 11, 12, 13, 1, 37, 38 | cdleme7aa 38708 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ π
β€ (π β¨ π)) |
40 | 9, 10, 11, 12 | 2llnma2 38255 |
. . . . . . 7
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ Β¬ π
β€ (π β¨ π))) β ((π
β¨ π) β§ (π
β¨ π)) = π
) |
41 | 17, 21, 22, 23, 36, 39, 40 | syl132anc 1389 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π
β¨ π) β§ (π
β¨ π)) = π
) |
42 | 16, 41 | eqtrd 2777 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π β¨ π) β§ (π
β¨ π)) = π
) |
43 | 42 | oveq1d 7373 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (((π β¨ π) β§ (π
β¨ π)) β§ π) = (π
β§ π)) |
44 | | hlol 37826 |
. . . . . 6
β’ (πΎ β HL β πΎ β OL) |
45 | 17, 44 | syl 17 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β OL) |
46 | 25, 10, 12 | hlatjcl 37832 |
. . . . . 6
β’ ((πΎ β HL β§ π
β π΄ β§ π β π΄) β (π
β¨ π) β (BaseβπΎ)) |
47 | 17, 23, 22, 46 | syl3anc 1372 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β¨ π) β (BaseβπΎ)) |
48 | 25, 11 | latmmdir 37700 |
. . . . 5
β’ ((πΎ β OL β§ ((π β¨ π) β (BaseβπΎ) β§ (π
β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ))) β (((π β¨ π) β§ (π
β¨ π)) β§ π) = (((π β¨ π) β§ π) β§ ((π
β¨ π) β§ π))) |
49 | 45, 27, 47, 30, 48 | syl13anc 1373 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (((π β¨ π) β§ (π
β¨ π)) β§ π) = (((π β¨ π) β§ π) β§ ((π
β¨ π) β§ π))) |
50 | | eqid 2737 |
. . . . . 6
β’
(0.βπΎ) =
(0.βπΎ) |
51 | 9, 11, 50, 12, 13 | lhpmat 38496 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π
β π΄ β§ Β¬ π
β€ π)) β (π
β§ π) = (0.βπΎ)) |
52 | 4, 7, 51 | syl2anc 585 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β§ π) = (0.βπΎ)) |
53 | 43, 49, 52 | 3eqtr3d 2785 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (((π β¨ π) β§ π) β§ ((π
β¨ π) β§ π)) = (0.βπΎ)) |
54 | 3, 53 | eqtrid 2789 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β§ π) = (0.βπΎ)) |
55 | | hlatl 37825 |
. . . 4
β’ (πΎ β HL β πΎ β AtLat) |
56 | 17, 55 | syl 17 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β AtLat) |
57 | | simp33 1212 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ (π β¨ π)) |
58 | 9, 10, 11, 12, 13, 1, 37, 38, 2 | cdleme7b 38710 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π))) β π β π΄) |
59 | 4, 7, 22, 57, 8, 58 | syl113anc 1383 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
60 | 11, 50, 12 | atnem0 37783 |
. . 3
β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (π β π β (π β§ π) = (0.βπΎ))) |
61 | 56, 21, 59, 60 | syl3anc 1372 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π β (π β§ π) = (0.βπΎ))) |
62 | 54, 61 | mpbird 257 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π) |