Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmcvr4N Structured version   Visualization version   GIF version

Theorem lhpmcvr4N 36555
Description: Specialization of lhpmcvr2 36553. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpmcvr2.b 𝐵 = (Base‘𝐾)
lhpmcvr2.l = (le‘𝐾)
lhpmcvr2.j = (join‘𝐾)
lhpmcvr2.m = (meet‘𝐾)
lhpmcvr2.a 𝐴 = (Atoms‘𝐾)
lhpmcvr2.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmcvr4N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ¬ 𝑃 𝑌)

Proof of Theorem lhpmcvr4N
StepHypRef Expression
1 simp2rr 1223 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ¬ 𝑃 𝑊)
2 simp33 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑃 𝑋)
3 simp1l 1177 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝐾 ∈ HL)
43hllatd 35893 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝐾 ∈ Lat)
5 simp2rl 1222 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑃𝐴)
6 lhpmcvr2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
7 lhpmcvr2.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
86, 7atbase 35818 . . . . . . 7 (𝑃𝐴𝑃𝐵)
95, 8syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑃𝐵)
10 simp2ll 1220 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑋𝐵)
11 simp31 1189 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑌𝐵)
12 lhpmcvr2.l . . . . . . 7 = (le‘𝐾)
13 lhpmcvr2.m . . . . . . 7 = (meet‘𝐾)
146, 12, 13latlem12 17536 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑋𝐵𝑌𝐵)) → ((𝑃 𝑋𝑃 𝑌) ↔ 𝑃 (𝑋 𝑌)))
154, 9, 10, 11, 14syl13anc 1352 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ((𝑃 𝑋𝑃 𝑌) ↔ 𝑃 (𝑋 𝑌)))
1615biimpd 221 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ((𝑃 𝑋𝑃 𝑌) → 𝑃 (𝑋 𝑌)))
172, 16mpand 682 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → (𝑃 𝑌𝑃 (𝑋 𝑌)))
18 simp32 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → (𝑋 𝑌) 𝑊)
196, 13latmcl 17510 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
204, 10, 11, 19syl3anc 1351 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → (𝑋 𝑌) ∈ 𝐵)
21 simp1r 1178 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑊𝐻)
22 lhpmcvr2.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
236, 22lhpbase 36527 . . . . . 6 (𝑊𝐻𝑊𝐵)
2421, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑊𝐵)
256, 12lattr 17514 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑊𝐵)) → ((𝑃 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑊) → 𝑃 𝑊))
264, 9, 20, 24, 25syl13anc 1352 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ((𝑃 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑊) → 𝑃 𝑊))
2718, 26mpan2d 681 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → (𝑃 (𝑋 𝑌) → 𝑃 𝑊))
2817, 27syld 47 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → (𝑃 𝑌𝑃 𝑊))
291, 28mtod 190 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ¬ 𝑃 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048   class class class wbr 4923  cfv 6182  (class class class)co 6970  Basecbs 16329  lecple 16418  joincjn 17402  meetcmee 17403  Latclat 17503  Atomscatm 35792  HLchlt 35879  LHypclh 36513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-poset 17404  df-lub 17432  df-glb 17433  df-join 17434  df-meet 17435  df-lat 17504  df-ats 35796  df-atl 35827  df-cvlat 35851  df-hlat 35880  df-lhyp 36517
This theorem is referenced by:  lhpmcvr5N  36556  dihmeetlem17N  37852
  Copyright terms: Public domain W3C validator