| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemeet2 | Structured version Visualization version GIF version | ||
| Description: A meet's second argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| meetval2.l | ⊢ ≤ = (le‘𝐾) |
| meetval2.m | ⊢ ∧ = (meet‘𝐾) |
| meetval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| meetval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| meetval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| meetlem.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| Ref | Expression |
|---|---|
| lemeet2 | ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | meetval2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | meetval2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 4 | meetval2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 5 | meetval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | meetval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | meetlem.e | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | meetlem 18412 | . 2 ⊢ (𝜑 → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) |
| 9 | 8 | simplrd 769 | 1 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 〈cop 4612 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 meetcmee 18329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-glb 18362 df-meet 18364 |
| This theorem is referenced by: meetle 18415 latmle2 18480 |
| Copyright terms: Public domain | W3C validator |