![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiunlelem | Structured version Visualization version GIF version |
Description: The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meaiunlelem.1 | ⊢ Ⅎ𝑛𝜑 |
meaiunlelem.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiunlelem.s | ⊢ 𝑆 = dom 𝑀 |
meaiunlelem.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiunlelem.e | ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) |
meaiunlelem.f | ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
Ref | Expression |
---|---|
meaiunlelem | ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiunlelem.1 | . . . . . . 7 ⊢ Ⅎ𝑛𝜑 | |
2 | meaiunlelem.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
3 | meaiunlelem.e | . . . . . . 7 ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) | |
4 | meaiunlelem.f | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) | |
5 | 1, 2, 3, 4 | iundjiun 46381 | . . . . . 6 ⊢ (𝜑 → ((∀𝑥 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑥)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑥)(𝐸‘𝑛) ∧ ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∧ Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛))) |
6 | 5 | simplrd 769 | . . . . 5 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
7 | 6 | eqcomd 2746 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛)) |
8 | 7 | fveq2d 6924 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛))) |
9 | meaiunlelem.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
10 | meaiunlelem.s | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
11 | 9, 10 | dmmeasal 46373 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
13 | 3 | ffvelcdmda 7118 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ 𝑆) |
14 | fzofi 14025 | . . . . . . . . . . 11 ⊢ (𝑁..^𝑛) ∈ Fin | |
15 | isfinite 9721 | . . . . . . . . . . . . 13 ⊢ ((𝑁..^𝑛) ∈ Fin ↔ (𝑁..^𝑛) ≺ ω) | |
16 | 15 | biimpi 216 | . . . . . . . . . . . 12 ⊢ ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≺ ω) |
17 | sdomdom 9040 | . . . . . . . . . . . 12 ⊢ ((𝑁..^𝑛) ≺ ω → (𝑁..^𝑛) ≼ ω) | |
18 | 16, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≼ ω) |
19 | 14, 18 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑁..^𝑛) ≼ ω |
20 | 19 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁..^𝑛) ≼ ω) |
21 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍⟶𝑆) |
22 | elfzouz 13720 | . . . . . . . . . . . 12 ⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ (ℤ≥‘𝑁)) | |
23 | 2 | eqcomi 2749 | . . . . . . . . . . . 12 ⊢ (ℤ≥‘𝑁) = 𝑍 |
24 | 22, 23 | eleqtrdi 2854 | . . . . . . . . . . 11 ⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ 𝑍) |
25 | 24 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ 𝑍) |
26 | 21, 25 | ffvelcdmd 7119 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸‘𝑖) ∈ 𝑆) |
27 | 11, 20, 26 | saliuncl 46244 | . . . . . . . 8 ⊢ (𝜑 → ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ 𝑆) |
28 | 27 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ 𝑆) |
29 | saldifcl2 46249 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ (𝐸‘𝑛) ∈ 𝑆 ∧ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ 𝑆) → ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ 𝑆) | |
30 | 12, 13, 28, 29 | syl3anc 1371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ 𝑆) |
31 | 1, 30, 4 | fmptdf 7151 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶𝑆) |
32 | 31 | ffvelcdmda 7118 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑆) |
33 | eqid 2740 | . . . . . . 7 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
34 | 33 | uzct 44965 | . . . . . 6 ⊢ (ℤ≥‘𝑁) ≼ ω |
35 | 2, 34 | eqbrtri 5187 | . . . . 5 ⊢ 𝑍 ≼ ω |
36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑍 ≼ ω) |
37 | 5 | simprd 495 | . . . 4 ⊢ (𝜑 → Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛)) |
38 | 1, 9, 10, 32, 36, 37 | meadjiun 46387 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛)) = (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) |
39 | eqidd 2741 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛)))) = (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) | |
40 | 8, 38, 39 | 3eqtrd 2784 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) |
41 | 2 | fvexi 6934 | . . . 4 ⊢ 𝑍 ∈ V |
42 | 41 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
43 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑀 ∈ Meas) |
44 | 43, 10, 32 | meacl 46379 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) ∈ (0[,]+∞)) |
45 | 43, 10, 13 | meacl 46379 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
46 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
47 | 13 | difexd 5349 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V) |
48 | 4 | fvmpt2 7040 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
49 | 46, 47, 48 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
50 | difssd 4160 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ⊆ (𝐸‘𝑛)) | |
51 | 49, 50 | eqsstrd 4047 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ⊆ (𝐸‘𝑛)) |
52 | 43, 10, 32, 13, 51 | meassle 46384 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) ≤ (𝑀‘(𝐸‘𝑛))) |
53 | 1, 42, 44, 45, 52 | sge0lempt 46331 | . 2 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛)))) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) |
54 | 40, 53 | eqbrtrd 5188 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ∪ ciun 5015 Disj wdisj 5133 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ≼ cdom 9001 ≺ csdm 9002 Fincfn 9003 ≤ cle 11325 ℤ≥cuz 12903 ...cfz 13567 ..^cfzo 13711 SAlgcsalg 46229 Σ^csumge0 46283 Meascmea 46370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-xadd 13176 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-salg 46230 df-sumge0 46284 df-mea 46371 |
This theorem is referenced by: meaiunle 46390 |
Copyright terms: Public domain | W3C validator |