Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiunlelem Structured version   Visualization version   GIF version

Theorem meaiunlelem 46089
Description: The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meaiunlelem.1 𝑛𝜑
meaiunlelem.m (𝜑𝑀 ∈ Meas)
meaiunlelem.s 𝑆 = dom 𝑀
meaiunlelem.z 𝑍 = (ℤ𝑁)
meaiunlelem.e (𝜑𝐸:𝑍𝑆)
meaiunlelem.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
meaiunlelem (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))))
Distinct variable groups:   𝑖,𝐸,𝑛   𝑛,𝑀   𝑖,𝑁,𝑛   𝑆,𝑖,𝑛   𝑛,𝑍   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑖,𝑛)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem meaiunlelem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 meaiunlelem.1 . . . . . . 7 𝑛𝜑
2 meaiunlelem.z . . . . . . 7 𝑍 = (ℤ𝑁)
3 meaiunlelem.e . . . . . . 7 (𝜑𝐸:𝑍𝑆)
4 meaiunlelem.f . . . . . . 7 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
51, 2, 3, 4iundjiun 46081 . . . . . 6 (𝜑 → ((∀𝑥𝑍 𝑛 ∈ (𝑁...𝑥)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑥)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
65simplrd 768 . . . . 5 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
76eqcomd 2732 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) = 𝑛𝑍 (𝐹𝑛))
87fveq2d 6905 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = (𝑀 𝑛𝑍 (𝐹𝑛)))
9 meaiunlelem.m . . . 4 (𝜑𝑀 ∈ Meas)
10 meaiunlelem.s . . . 4 𝑆 = dom 𝑀
119, 10dmmeasal 46073 . . . . . . . 8 (𝜑𝑆 ∈ SAlg)
1211adantr 479 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
133ffvelcdmda 7098 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑆)
14 fzofi 13994 . . . . . . . . . . 11 (𝑁..^𝑛) ∈ Fin
15 isfinite 9695 . . . . . . . . . . . . 13 ((𝑁..^𝑛) ∈ Fin ↔ (𝑁..^𝑛) ≺ ω)
1615biimpi 215 . . . . . . . . . . . 12 ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≺ ω)
17 sdomdom 9011 . . . . . . . . . . . 12 ((𝑁..^𝑛) ≺ ω → (𝑁..^𝑛) ≼ ω)
1816, 17syl 17 . . . . . . . . . . 11 ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≼ ω)
1914, 18ax-mp 5 . . . . . . . . . 10 (𝑁..^𝑛) ≼ ω
2019a1i 11 . . . . . . . . 9 (𝜑 → (𝑁..^𝑛) ≼ ω)
213adantr 479 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍𝑆)
22 elfzouz 13690 . . . . . . . . . . . 12 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ (ℤ𝑁))
232eqcomi 2735 . . . . . . . . . . . 12 (ℤ𝑁) = 𝑍
2422, 23eleqtrdi 2836 . . . . . . . . . . 11 (𝑖 ∈ (𝑁..^𝑛) → 𝑖𝑍)
2524adantl 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝑖𝑍)
2621, 25ffvelcdmd 7099 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ 𝑆)
2711, 20, 26saliuncl 45944 . . . . . . . 8 (𝜑 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ 𝑆)
2827adantr 479 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ 𝑆)
29 saldifcl2 45949 . . . . . . 7 ((𝑆 ∈ SAlg ∧ (𝐸𝑛) ∈ 𝑆 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ 𝑆) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ 𝑆)
3012, 13, 28, 29syl3anc 1368 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ 𝑆)
311, 30, 4fmptdf 7131 . . . . 5 (𝜑𝐹:𝑍𝑆)
3231ffvelcdmda 7098 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑆)
33 eqid 2726 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
3433uzct 44664 . . . . . 6 (ℤ𝑁) ≼ ω
352, 34eqbrtri 5174 . . . . 5 𝑍 ≼ ω
3635a1i 11 . . . 4 (𝜑𝑍 ≼ ω)
375simprd 494 . . . 4 (𝜑Disj 𝑛𝑍 (𝐹𝑛))
381, 9, 10, 32, 36, 37meadjiun 46087 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
39 eqidd 2727 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
408, 38, 393eqtrd 2770 . 2 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
412fvexi 6915 . . . 4 𝑍 ∈ V
4241a1i 11 . . 3 (𝜑𝑍 ∈ V)
439adantr 479 . . . 4 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
4443, 10, 32meacl 46079 . . 3 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,]+∞))
4543, 10, 13meacl 46079 . . 3 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ (0[,]+∞))
46 simpr 483 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛𝑍)
4713difexd 5336 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
484fvmpt2 7020 . . . . . 6 ((𝑛𝑍 ∧ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
4946, 47, 48syl2anc 582 . . . . 5 ((𝜑𝑛𝑍) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
50 difssd 4132 . . . . 5 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ⊆ (𝐸𝑛))
5149, 50eqsstrd 4018 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ⊆ (𝐸𝑛))
5243, 10, 32, 13, 51meassle 46084 . . 3 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ≤ (𝑀‘(𝐸𝑛)))
531, 42, 44, 45, 52sge0lempt 46031 . 2 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))))
5440, 53eqbrtrd 5175 1 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wnf 1778  wcel 2099  wral 3051  Vcvv 3462  cdif 3944   ciun 5001  Disj wdisj 5118   class class class wbr 5153  cmpt 5236  dom cdm 5682  wf 6550  cfv 6554  (class class class)co 7424  ωcom 7876  cdom 8972  csdm 8973  Fincfn 8974  cle 11299  cuz 12874  ...cfz 13538  ..^cfzo 13681  SAlgcsalg 45929  Σ^csumge0 45983  Meascmea 46070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-disj 5119  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-omul 8501  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-oi 9553  df-card 9982  df-acn 9985  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-xadd 13147  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-sum 15691  df-salg 45930  df-sumge0 45984  df-mea 46071
This theorem is referenced by:  meaiunle  46090
  Copyright terms: Public domain W3C validator