| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | meaiunlelem.1 | . . . . . . 7
⊢
Ⅎ𝑛𝜑 | 
| 2 |  | meaiunlelem.z | . . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑁) | 
| 3 |  | meaiunlelem.e | . . . . . . 7
⊢ (𝜑 → 𝐸:𝑍⟶𝑆) | 
| 4 |  | meaiunlelem.f | . . . . . . 7
⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) | 
| 5 | 1, 2, 3, 4 | iundjiun 46475 | . . . . . 6
⊢ (𝜑 → ((∀𝑥 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑥)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑥)(𝐸‘𝑛) ∧ ∪
𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∧ Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛))) | 
| 6 | 5 | simplrd 770 | . . . . 5
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) | 
| 7 | 6 | eqcomd 2743 | . . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛)) | 
| 8 | 7 | fveq2d 6910 | . . 3
⊢ (𝜑 → (𝑀‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝑀‘∪
𝑛 ∈ 𝑍 (𝐹‘𝑛))) | 
| 9 |  | meaiunlelem.m | . . . 4
⊢ (𝜑 → 𝑀 ∈ Meas) | 
| 10 |  | meaiunlelem.s | . . . 4
⊢ 𝑆 = dom 𝑀 | 
| 11 | 9, 10 | dmmeasal 46467 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ SAlg) | 
| 12 | 11 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) | 
| 13 | 3 | ffvelcdmda 7104 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ 𝑆) | 
| 14 |  | fzofi 14015 | . . . . . . . . . . 11
⊢ (𝑁..^𝑛) ∈ Fin | 
| 15 |  | isfinite 9692 | . . . . . . . . . . . . 13
⊢ ((𝑁..^𝑛) ∈ Fin ↔ (𝑁..^𝑛) ≺ ω) | 
| 16 | 15 | biimpi 216 | . . . . . . . . . . . 12
⊢ ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≺ ω) | 
| 17 |  | sdomdom 9020 | . . . . . . . . . . . 12
⊢ ((𝑁..^𝑛) ≺ ω → (𝑁..^𝑛) ≼ ω) | 
| 18 | 16, 17 | syl 17 | . . . . . . . . . . 11
⊢ ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≼ ω) | 
| 19 | 14, 18 | ax-mp 5 | . . . . . . . . . 10
⊢ (𝑁..^𝑛) ≼ ω | 
| 20 | 19 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → (𝑁..^𝑛) ≼ ω) | 
| 21 | 3 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍⟶𝑆) | 
| 22 |  | elfzouz 13703 | . . . . . . . . . . . 12
⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ (ℤ≥‘𝑁)) | 
| 23 | 2 | eqcomi 2746 | . . . . . . . . . . . 12
⊢
(ℤ≥‘𝑁) = 𝑍 | 
| 24 | 22, 23 | eleqtrdi 2851 | . . . . . . . . . . 11
⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ 𝑍) | 
| 25 | 24 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ 𝑍) | 
| 26 | 21, 25 | ffvelcdmd 7105 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸‘𝑖) ∈ 𝑆) | 
| 27 | 11, 20, 26 | saliuncl 46338 | . . . . . . . 8
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ 𝑆) | 
| 28 | 27 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ 𝑆) | 
| 29 |  | saldifcl2 46343 | . . . . . . 7
⊢ ((𝑆 ∈ SAlg ∧ (𝐸‘𝑛) ∈ 𝑆 ∧ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ 𝑆) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ 𝑆) | 
| 30 | 12, 13, 28, 29 | syl3anc 1373 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ 𝑆) | 
| 31 | 1, 30, 4 | fmptdf 7137 | . . . . 5
⊢ (𝜑 → 𝐹:𝑍⟶𝑆) | 
| 32 | 31 | ffvelcdmda 7104 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑆) | 
| 33 |  | eqid 2737 | . . . . . . 7
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) | 
| 34 | 33 | uzct 45068 | . . . . . 6
⊢
(ℤ≥‘𝑁) ≼ ω | 
| 35 | 2, 34 | eqbrtri 5164 | . . . . 5
⊢ 𝑍 ≼
ω | 
| 36 | 35 | a1i 11 | . . . 4
⊢ (𝜑 → 𝑍 ≼ ω) | 
| 37 | 5 | simprd 495 | . . . 4
⊢ (𝜑 → Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛)) | 
| 38 | 1, 9, 10, 32, 36, 37 | meadjiun 46481 | . . 3
⊢ (𝜑 → (𝑀‘∪
𝑛 ∈ 𝑍 (𝐹‘𝑛)) =
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) | 
| 39 |  | eqidd 2738 | . . 3
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛)))) =
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) | 
| 40 | 8, 38, 39 | 3eqtrd 2781 | . 2
⊢ (𝜑 → (𝑀‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) =
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) | 
| 41 | 2 | fvexi 6920 | . . . 4
⊢ 𝑍 ∈ V | 
| 42 | 41 | a1i 11 | . . 3
⊢ (𝜑 → 𝑍 ∈ V) | 
| 43 | 9 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑀 ∈ Meas) | 
| 44 | 43, 10, 32 | meacl 46473 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) ∈ (0[,]+∞)) | 
| 45 | 43, 10, 13 | meacl 46473 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ∈ (0[,]+∞)) | 
| 46 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | 
| 47 | 13 | difexd 5331 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V) | 
| 48 | 4 | fvmpt2 7027 | . . . . . 6
⊢ ((𝑛 ∈ 𝑍 ∧ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) | 
| 49 | 46, 47, 48 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) | 
| 50 |  | difssd 4137 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ⊆ (𝐸‘𝑛)) | 
| 51 | 49, 50 | eqsstrd 4018 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ⊆ (𝐸‘𝑛)) | 
| 52 | 43, 10, 32, 13, 51 | meassle 46478 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) ≤ (𝑀‘(𝐸‘𝑛))) | 
| 53 | 1, 42, 44, 45, 52 | sge0lempt 46425 | . 2
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛)))) ≤
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) | 
| 54 | 40, 53 | eqbrtrd 5165 | 1
⊢ (𝜑 → (𝑀‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) |