Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiunlelem | Structured version Visualization version GIF version |
Description: The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meaiunlelem.1 | ⊢ Ⅎ𝑛𝜑 |
meaiunlelem.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiunlelem.s | ⊢ 𝑆 = dom 𝑀 |
meaiunlelem.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiunlelem.e | ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) |
meaiunlelem.f | ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
Ref | Expression |
---|---|
meaiunlelem | ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiunlelem.1 | . . . . . . 7 ⊢ Ⅎ𝑛𝜑 | |
2 | meaiunlelem.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
3 | meaiunlelem.e | . . . . . . 7 ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) | |
4 | meaiunlelem.f | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) | |
5 | 1, 2, 3, 4 | iundjiun 43888 | . . . . . 6 ⊢ (𝜑 → ((∀𝑥 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑥)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑥)(𝐸‘𝑛) ∧ ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∧ Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛))) |
6 | 5 | simplrd 766 | . . . . 5 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
7 | 6 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛)) |
8 | 7 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛))) |
9 | meaiunlelem.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
10 | meaiunlelem.s | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
11 | 9, 10 | dmmeasal 43880 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
13 | 3 | ffvelrnda 6943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ 𝑆) |
14 | fzofi 13622 | . . . . . . . . . . 11 ⊢ (𝑁..^𝑛) ∈ Fin | |
15 | isfinite 9340 | . . . . . . . . . . . . 13 ⊢ ((𝑁..^𝑛) ∈ Fin ↔ (𝑁..^𝑛) ≺ ω) | |
16 | 15 | biimpi 215 | . . . . . . . . . . . 12 ⊢ ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≺ ω) |
17 | sdomdom 8723 | . . . . . . . . . . . 12 ⊢ ((𝑁..^𝑛) ≺ ω → (𝑁..^𝑛) ≼ ω) | |
18 | 16, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≼ ω) |
19 | 14, 18 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑁..^𝑛) ≼ ω |
20 | 19 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁..^𝑛) ≼ ω) |
21 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍⟶𝑆) |
22 | elfzouz 13320 | . . . . . . . . . . . 12 ⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ (ℤ≥‘𝑁)) | |
23 | 2 | eqcomi 2747 | . . . . . . . . . . . 12 ⊢ (ℤ≥‘𝑁) = 𝑍 |
24 | 22, 23 | eleqtrdi 2849 | . . . . . . . . . . 11 ⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ 𝑍) |
25 | 24 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ 𝑍) |
26 | 21, 25 | ffvelrnd 6944 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸‘𝑖) ∈ 𝑆) |
27 | 11, 20, 26 | saliuncl 43753 | . . . . . . . 8 ⊢ (𝜑 → ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ 𝑆) |
28 | 27 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ 𝑆) |
29 | saldifcl2 43757 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ (𝐸‘𝑛) ∈ 𝑆 ∧ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ 𝑆) → ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ 𝑆) | |
30 | 12, 13, 28, 29 | syl3anc 1369 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ 𝑆) |
31 | 1, 30, 4 | fmptdf 6973 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶𝑆) |
32 | 31 | ffvelrnda 6943 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑆) |
33 | eqid 2738 | . . . . . . 7 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
34 | 33 | uzct 42500 | . . . . . 6 ⊢ (ℤ≥‘𝑁) ≼ ω |
35 | 2, 34 | eqbrtri 5091 | . . . . 5 ⊢ 𝑍 ≼ ω |
36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑍 ≼ ω) |
37 | 5 | simprd 495 | . . . 4 ⊢ (𝜑 → Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛)) |
38 | 1, 9, 10, 32, 36, 37 | meadjiun 43894 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛)) = (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) |
39 | eqidd 2739 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛)))) = (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) | |
40 | 8, 38, 39 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) |
41 | 2 | fvexi 6770 | . . . 4 ⊢ 𝑍 ∈ V |
42 | 41 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
43 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑀 ∈ Meas) |
44 | 43, 10, 32 | meacl 43886 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) ∈ (0[,]+∞)) |
45 | 43, 10, 13 | meacl 43886 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
46 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
47 | 13 | difexd 5248 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V) |
48 | 4 | fvmpt2 6868 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
49 | 46, 47, 48 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
50 | difssd 4063 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ⊆ (𝐸‘𝑛)) | |
51 | 49, 50 | eqsstrd 3955 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ⊆ (𝐸‘𝑛)) |
52 | 43, 10, 32, 13, 51 | meassle 43891 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) ≤ (𝑀‘(𝐸‘𝑛))) |
53 | 1, 42, 44, 45, 52 | sge0lempt 43838 | . 2 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛)))) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) |
54 | 40, 53 | eqbrtrd 5092 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ∪ ciun 4921 Disj wdisj 5035 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ωcom 7687 ≼ cdom 8689 ≺ csdm 8690 Fincfn 8691 ≤ cle 10941 ℤ≥cuz 12511 ...cfz 13168 ..^cfzo 13311 SAlgcsalg 43739 Σ^csumge0 43790 Meascmea 43877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-salg 43740 df-sumge0 43791 df-mea 43878 |
This theorem is referenced by: meaiunle 43897 |
Copyright terms: Public domain | W3C validator |