Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiunlelem Structured version   Visualization version   GIF version

Theorem meaiunlelem 41198
Description: The measure of the union of countable sets is less or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meaiunlelem.1 𝑛𝜑
meaiunlelem.m (𝜑𝑀 ∈ Meas)
meaiunlelem.s 𝑆 = dom 𝑀
meaiunlelem.z 𝑍 = (ℤ𝑁)
meaiunlelem.e (𝜑𝐸:𝑍𝑆)
meaiunlelem.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
meaiunlelem (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))))
Distinct variable groups:   𝑖,𝐸,𝑛   𝑛,𝑀   𝑖,𝑁,𝑛   𝑆,𝑖,𝑛   𝑛,𝑍   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑖,𝑛)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem meaiunlelem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 meaiunlelem.1 . . . . . . 7 𝑛𝜑
2 meaiunlelem.z . . . . . . 7 𝑍 = (ℤ𝑁)
3 meaiunlelem.e . . . . . . 7 (𝜑𝐸:𝑍𝑆)
4 meaiunlelem.f . . . . . . 7 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
51, 2, 3, 4iundjiun 41190 . . . . . 6 (𝜑 → ((∀𝑥𝑍 𝑛 ∈ (𝑁...𝑥)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑥)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
65simplrd 745 . . . . 5 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
76eqcomd 2777 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) = 𝑛𝑍 (𝐹𝑛))
87fveq2d 6336 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = (𝑀 𝑛𝑍 (𝐹𝑛)))
9 meaiunlelem.m . . . 4 (𝜑𝑀 ∈ Meas)
10 meaiunlelem.s . . . 4 𝑆 = dom 𝑀
119, 10dmmeasal 41182 . . . . . . . 8 (𝜑𝑆 ∈ SAlg)
1211adantr 466 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
133ffvelrnda 6502 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑆)
14 fzofi 12980 . . . . . . . . . . 11 (𝑁..^𝑛) ∈ Fin
15 isfinite 8712 . . . . . . . . . . . . 13 ((𝑁..^𝑛) ∈ Fin ↔ (𝑁..^𝑛) ≺ ω)
1615biimpi 206 . . . . . . . . . . . 12 ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≺ ω)
17 sdomdom 8136 . . . . . . . . . . . 12 ((𝑁..^𝑛) ≺ ω → (𝑁..^𝑛) ≼ ω)
1816, 17syl 17 . . . . . . . . . . 11 ((𝑁..^𝑛) ∈ Fin → (𝑁..^𝑛) ≼ ω)
1914, 18ax-mp 5 . . . . . . . . . 10 (𝑁..^𝑛) ≼ ω
2019a1i 11 . . . . . . . . 9 (𝜑 → (𝑁..^𝑛) ≼ ω)
213adantr 466 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍𝑆)
22 elfzouz 12681 . . . . . . . . . . . 12 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ (ℤ𝑁))
232eqcomi 2780 . . . . . . . . . . . 12 (ℤ𝑁) = 𝑍
2422, 23syl6eleq 2860 . . . . . . . . . . 11 (𝑖 ∈ (𝑁..^𝑛) → 𝑖𝑍)
2524adantl 467 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝑖𝑍)
2621, 25ffvelrnd 6503 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ 𝑆)
2711, 20, 26saliuncl 41055 . . . . . . . 8 (𝜑 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ 𝑆)
2827adantr 466 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ 𝑆)
29 saldifcl2 41059 . . . . . . 7 ((𝑆 ∈ SAlg ∧ (𝐸𝑛) ∈ 𝑆 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ 𝑆) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ 𝑆)
3012, 13, 28, 29syl3anc 1476 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ 𝑆)
311, 30, 4fmptdf 6529 . . . . 5 (𝜑𝐹:𝑍𝑆)
3231ffvelrnda 6502 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑆)
33 eqid 2771 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
3433uzct 39749 . . . . . 6 (ℤ𝑁) ≼ ω
352, 34eqbrtri 4807 . . . . 5 𝑍 ≼ ω
3635a1i 11 . . . 4 (𝜑𝑍 ≼ ω)
375simprd 477 . . . 4 (𝜑Disj 𝑛𝑍 (𝐹𝑛))
381, 9, 10, 32, 36, 37meadjiun 41196 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
39 eqidd 2772 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
408, 38, 393eqtrd 2809 . 2 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
41 fvex 6342 . . . . 5 (ℤ𝑁) ∈ V
422, 41eqeltri 2846 . . . 4 𝑍 ∈ V
4342a1i 11 . . 3 (𝜑𝑍 ∈ V)
449adantr 466 . . . 4 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
4544, 10, 32meacl 41188 . . 3 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,]+∞))
4644, 10, 13meacl 41188 . . 3 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ (0[,]+∞))
47 simpr 471 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛𝑍)
48 difexg 4942 . . . . . . 7 ((𝐸𝑛) ∈ 𝑆 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
4913, 48syl 17 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
504fvmpt2 6433 . . . . . 6 ((𝑛𝑍 ∧ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
5147, 49, 50syl2anc 565 . . . . 5 ((𝜑𝑛𝑍) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
52 difssd 3889 . . . . 5 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ⊆ (𝐸𝑛))
5351, 52eqsstrd 3788 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ⊆ (𝐸𝑛))
5444, 10, 32, 13, 53meassle 41193 . . 3 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ≤ (𝑀‘(𝐸𝑛)))
551, 43, 45, 46, 54sge0lempt 41140 . 2 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))))
5640, 55eqbrtrd 4808 1 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wnf 1856  wcel 2145  wral 3061  Vcvv 3351  cdif 3720   ciun 4654  Disj wdisj 4754   class class class wbr 4786  cmpt 4863  dom cdm 5249  wf 6027  cfv 6031  (class class class)co 6792  ωcom 7211  cdom 8106  csdm 8107  Fincfn 8108  cle 10276  cuz 11887  ...cfz 12532  ..^cfzo 12672  SAlgcsalg 41041  Σ^csumge0 41092  Meascmea 41179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-omul 7717  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-oi 8570  df-card 8964  df-acn 8967  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-xadd 12151  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-salg 41042  df-sumge0 41093  df-mea 41180
This theorem is referenced by:  meaiunle  41199
  Copyright terms: Public domain W3C validator