Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mea0 | Structured version Visualization version GIF version |
Description: The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
mea0.1 | ⊢ (𝜑 → 𝑀 ∈ Meas) |
Ref | Expression |
---|---|
mea0 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mea0.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | ismea 44378 | . . 3 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) |
4 | 3 | simplrd 767 | 1 ⊢ (𝜑 → (𝑀‘∅) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∅c0 4270 𝒫 cpw 4548 ∪ cuni 4853 Disj wdisj 5058 class class class wbr 5093 dom cdm 5621 ↾ cres 5623 ⟶wf 6476 ‘cfv 6480 (class class class)co 7338 ωcom 7781 ≼ cdom 8803 0cc0 10973 +∞cpnf 11108 [,]cicc 13184 SAlgcsalg 44237 Σ^csumge0 44289 Meascmea 44376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-mea 44377 |
This theorem is referenced by: meadjun 44389 meadjiunlem 44392 vonioo 44609 vonicc 44612 |
Copyright terms: Public domain | W3C validator |