![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcf2 | Structured version Visualization version GIF version |
Description: The upper adjoint 𝐺 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
Ref | Expression |
---|---|
mgcoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
mgcoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
mgcoval.3 | ⊢ ≤ = (le‘𝑉) |
mgcoval.4 | ⊢ ≲ = (le‘𝑊) |
mgcval.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcval.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
mgcval.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
mgccole.1 | ⊢ (𝜑 → 𝐹𝐻𝐺) |
Ref | Expression |
---|---|
mgcf2 | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgccole.1 | . . 3 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
2 | mgcoval.1 | . . . 4 ⊢ 𝐴 = (Base‘𝑉) | |
3 | mgcoval.2 | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
4 | mgcoval.3 | . . . 4 ⊢ ≤ = (le‘𝑉) | |
5 | mgcoval.4 | . . . 4 ⊢ ≲ = (le‘𝑊) | |
6 | mgcval.1 | . . . 4 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
7 | mgcval.2 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
8 | mgcval.3 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
9 | 2, 3, 4, 5, 6, 7, 8 | mgcval 32960 | . . 3 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
10 | 1, 9 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
11 | 10 | simplrd 769 | 1 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 Proset cproset 18363 MGalConncmgc 32952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-mgc 32954 |
This theorem is referenced by: mgcmntco 32967 mgcmnt2d 32971 |
Copyright terms: Public domain | W3C validator |