![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcf2 | Structured version Visualization version GIF version |
Description: The upper adjoint πΊ of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
Ref | Expression |
---|---|
mgcoval.1 | β’ π΄ = (Baseβπ) |
mgcoval.2 | β’ π΅ = (Baseβπ) |
mgcoval.3 | β’ β€ = (leβπ) |
mgcoval.4 | β’ β² = (leβπ) |
mgcval.1 | β’ π» = (πMGalConnπ) |
mgcval.2 | β’ (π β π β Proset ) |
mgcval.3 | β’ (π β π β Proset ) |
mgccole.1 | β’ (π β πΉπ»πΊ) |
Ref | Expression |
---|---|
mgcf2 | β’ (π β πΊ:π΅βΆπ΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgccole.1 | . . 3 β’ (π β πΉπ»πΊ) | |
2 | mgcoval.1 | . . . 4 β’ π΄ = (Baseβπ) | |
3 | mgcoval.2 | . . . 4 β’ π΅ = (Baseβπ) | |
4 | mgcoval.3 | . . . 4 β’ β€ = (leβπ) | |
5 | mgcoval.4 | . . . 4 β’ β² = (leβπ) | |
6 | mgcval.1 | . . . 4 β’ π» = (πMGalConnπ) | |
7 | mgcval.2 | . . . 4 β’ (π β π β Proset ) | |
8 | mgcval.3 | . . . 4 β’ (π β π β Proset ) | |
9 | 2, 3, 4, 5, 6, 7, 8 | mgcval 32157 | . . 3 β’ (π β (πΉπ»πΊ β ((πΉ:π΄βΆπ΅ β§ πΊ:π΅βΆπ΄) β§ βπ₯ β π΄ βπ¦ β π΅ ((πΉβπ₯) β² π¦ β π₯ β€ (πΊβπ¦))))) |
10 | 1, 9 | mpbid 231 | . 2 β’ (π β ((πΉ:π΄βΆπ΅ β§ πΊ:π΅βΆπ΄) β§ βπ₯ β π΄ βπ¦ β π΅ ((πΉβπ₯) β² π¦ β π₯ β€ (πΊβπ¦)))) |
11 | 10 | simplrd 769 | 1 β’ (π β πΊ:π΅βΆπ΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 class class class wbr 5149 βΆwf 6540 βcfv 6544 (class class class)co 7409 Basecbs 17144 lecple 17204 Proset cproset 18246 MGalConncmgc 32149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-mgc 32151 |
This theorem is referenced by: mgcmntco 32164 mgcmnt2d 32168 |
Copyright terms: Public domain | W3C validator |