Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcf2 | Structured version Visualization version GIF version |
Description: The upper adjoint 𝐺 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
Ref | Expression |
---|---|
mgcoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
mgcoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
mgcoval.3 | ⊢ ≤ = (le‘𝑉) |
mgcoval.4 | ⊢ ≲ = (le‘𝑊) |
mgcval.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcval.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
mgcval.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
mgccole.1 | ⊢ (𝜑 → 𝐹𝐻𝐺) |
Ref | Expression |
---|---|
mgcf2 | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgccole.1 | . . 3 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
2 | mgcoval.1 | . . . 4 ⊢ 𝐴 = (Base‘𝑉) | |
3 | mgcoval.2 | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
4 | mgcoval.3 | . . . 4 ⊢ ≤ = (le‘𝑉) | |
5 | mgcoval.4 | . . . 4 ⊢ ≲ = (le‘𝑊) | |
6 | mgcval.1 | . . . 4 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
7 | mgcval.2 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
8 | mgcval.3 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
9 | 2, 3, 4, 5, 6, 7, 8 | mgcval 30791 | . . 3 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
10 | 1, 9 | mpbid 235 | . 2 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
11 | 10 | simplrd 769 | 1 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 class class class wbr 5032 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 lecple 16630 Proset cproset 17602 MGalConncmgc 30783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-map 8418 df-mgc 30785 |
This theorem is referenced by: mgcmntco 30798 mgcmnt2d 30802 |
Copyright terms: Public domain | W3C validator |