Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcf2 Structured version   Visualization version   GIF version

Theorem mgcf2 30793
Description: The upper adjoint 𝐺 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
Assertion
Ref Expression
mgcf2 (𝜑𝐺:𝐵𝐴)

Proof of Theorem mgcf2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgccole.1 . . 3 (𝜑𝐹𝐻𝐺)
2 mgcoval.1 . . . 4 𝐴 = (Base‘𝑉)
3 mgcoval.2 . . . 4 𝐵 = (Base‘𝑊)
4 mgcoval.3 . . . 4 = (le‘𝑉)
5 mgcoval.4 . . . 4 = (le‘𝑊)
6 mgcval.1 . . . 4 𝐻 = (𝑉MGalConn𝑊)
7 mgcval.2 . . . 4 (𝜑𝑉 ∈ Proset )
8 mgcval.3 . . . 4 (𝜑𝑊 ∈ Proset )
92, 3, 4, 5, 6, 7, 8mgcval 30791 . . 3 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
101, 9mpbid 235 . 2 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplrd 769 1 (𝜑𝐺:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070   class class class wbr 5032  wf 6331  cfv 6335  (class class class)co 7150  Basecbs 16541  lecple 16630   Proset cproset 17602  MGalConncmgc 30783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8418  df-mgc 30785
This theorem is referenced by:  mgcmntco  30798  mgcmnt2d  30802
  Copyright terms: Public domain W3C validator