MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemr Structured version   Visualization version   GIF version

Theorem pntlemr 27661
Description: Lemma for pntlemj 27662. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemr (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝐽   𝑦,𝑢,𝑧,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑂   𝑧,𝑁   𝑢,𝑅,𝑦,𝑧   𝑢,𝑉   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑧,𝑌   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑎)   𝐶(𝑦,𝑢,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemr
StepHypRef Expression
1 pntlem1.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . . . . 13 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . . . . 13 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
71, 2, 3, 4, 5, 6pntlemd 27653 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
87simp1d 1141 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
9 pntlem1.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ+)
10 pntlem1.u2 . . . . . . . . . . . . 13 (𝜑𝑈𝐴)
11 pntlem1.e . . . . . . . . . . . . 13 𝐸 = (𝑈 / 𝐷)
12 pntlem1.k . . . . . . . . . . . . 13 𝐾 = (exp‘(𝐵 / 𝐸))
131, 2, 3, 4, 5, 6, 9, 10, 11, 12pntlemc 27654 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1413simp1d 1141 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
158, 14rpmulcld 13091 . . . . . . . . . 10 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
16 4re 12348 . . . . . . . . . . 11 4 ∈ ℝ
17 4pos 12371 . . . . . . . . . . 11 0 < 4
1816, 17elrpii 13035 . . . . . . . . . 10 4 ∈ ℝ+
19 rpdivcl 13058 . . . . . . . . . 10 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 4 ∈ ℝ+) → ((𝐿 · 𝐸) / 4) ∈ ℝ+)
2015, 18, 19sylancl 586 . . . . . . . . 9 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℝ+)
2120rpred 13075 . . . . . . . 8 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℝ)
22 pntlem1.y . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
23 pntlem1.x . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
24 pntlem1.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
25 pntlem1.w . . . . . . . . . . . 12 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
26 pntlem1.z . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑊[,)+∞))
271, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26pntlemb 27656 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2827simp1d 1141 . . . . . . . . . 10 (𝜑𝑍 ∈ ℝ+)
29 pntlem1.v . . . . . . . . . 10 (𝜑𝑉 ∈ ℝ+)
3028, 29rpdivcld 13092 . . . . . . . . 9 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
3130rpred 13075 . . . . . . . 8 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
3221, 31remulcld 11289 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℝ)
33 pntlem1.i . . . . . . . . . 10 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
34 fzfid 14011 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ∈ Fin)
3533, 34eqeltrid 2843 . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
36 hashcl 14392 . . . . . . . . 9 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
3735, 36syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐼) ∈ ℕ0)
3837nn0red 12586 . . . . . . 7 (𝜑 → (♯‘𝐼) ∈ ℝ)
3932recnd 11287 . . . . . . . . . . . 12 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℂ)
40 1rp 13036 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
41 rpaddcl 13055 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
4240, 15, 41sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
4342, 29rpmulcld 13091 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
4428, 43rpdivcld 13092 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
4544rpred 13075 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
46 reflcl 13833 . . . . . . . . . . . . . 14 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
4847recnd 11287 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℂ)
49 1cnd 11254 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
5039, 48, 49add32d 11487 . . . . . . . . . . 11 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) = (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
51 peano2re 11432 . . . . . . . . . . . . . 14 ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℝ → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ∈ ℝ)
5232, 51syl 17 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ∈ ℝ)
5352, 47readdcld 11288 . . . . . . . . . . . 12 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ∈ ℝ)
54 reflcl 13833 . . . . . . . . . . . . . 14 ((𝑍 / 𝑉) ∈ ℝ → (⌊‘(𝑍 / 𝑉)) ∈ ℝ)
5531, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℝ)
56 peano2re 11432 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / 𝑉)) ∈ ℝ → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ ℝ)
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ ℝ)
5815rphalfcld 13087 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℝ+)
5958, 30rpmulcld 13091 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) ∈ ℝ+)
6059rpred 13075 . . . . . . . . . . . . . 14 (𝜑 → (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) ∈ ℝ)
6160, 45readdcld 11288 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
62 rpdivcl 13058 . . . . . . . . . . . . . . . . . . . 20 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
6318, 15, 62sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
6463rpred 13075 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ)
6528rpsqrtcld 15447 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑍) ∈ ℝ+)
6665rpred 13075 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (√‘𝑍) ∈ ℝ)
6727simp3d 1143 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
6867simp1d 1141 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (√‘𝑍))
6943rpred 13075 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
7013simp2d 1142 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐾 ∈ ℝ+)
71 pntlem1.j . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ (𝑀..^𝑁))
72 elfzoelz 13696 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐽 ∈ ℤ)
7473peano2zd 12723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐽 + 1) ∈ ℤ)
7570, 74rpexpcld 14283 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
7675rpred 13075 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
77 pntlem1.V . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
7877simplrd 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
7970rpcnd 13077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐾 ∈ ℂ)
8070, 73rpexpcld 14283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝐾𝐽) ∈ ℝ+)
8180rpcnd 13077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐾𝐽) ∈ ℂ)
8279, 81mulcomd 11280 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
83 pntlem1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
84 pntlem1.n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
851, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26, 83, 84pntlemg 27657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
8685simp1d 1141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑀 ∈ ℕ)
87 elfzouz 13700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
8871, 87syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐽 ∈ (ℤ𝑀))
89 eluznn 12958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
9086, 88, 89syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐽 ∈ ℕ)
9190nnnn0d 12585 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ ℕ0)
9279, 91expp1d 14184 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
9382, 92eqtr4d 2778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
9478, 93breqtrd 5174 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
9569, 76, 94ltled 11407 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
96 fzofzp1 13800 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 ∈ (𝑀..^𝑁) → (𝐽 + 1) ∈ (𝑀...𝑁))
9771, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐽 + 1) ∈ (𝑀...𝑁))
981, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26, 83, 84pntlemh 27658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐽 + 1) ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
9997, 98mpdan 687 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
10099simprd 495 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍))
10169, 76, 66, 95, 100letrd 11416 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍))
10269, 66, 65lemul2d 13119 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍) ↔ ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍))))
103101, 102mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍)))
10428rprege0d 13082 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
105 remsqsqrt 15292 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
107103, 106breqtrd 5174 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍)
10828rpred 13075 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑍 ∈ ℝ)
10966, 108, 43lemuldivd 13124 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍 ↔ (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
110107, 109mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
11129rpcnd 13077 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑉 ∈ ℂ)
112111mullidd 11277 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 𝑉) = 𝑉)
113 1red 11260 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℝ)
11442rpred 13075 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
115 1re 11259 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ
116 ltaddrp 13070 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℝ ∧ (𝐿 · 𝐸) ∈ ℝ+) → 1 < (1 + (𝐿 · 𝐸)))
117115, 15, 116sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < (1 + (𝐿 · 𝐸)))
118113, 114, 29, 117ltmul1dd 13130 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 𝑉) < ((1 + (𝐿 · 𝐸)) · 𝑉))
119112, 118eqbrtrrd 5172 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑉 < ((1 + (𝐿 · 𝐸)) · 𝑉))
12029, 43, 28ltdiv2d 13098 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑉 < ((1 + (𝐿 · 𝐸)) · 𝑉) ↔ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) < (𝑍 / 𝑉)))
121119, 120mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) < (𝑍 / 𝑉))
12245, 31, 121ltled 11407 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ (𝑍 / 𝑉))
12366, 45, 31, 110, 122letrd 11416 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑉))
12464, 66, 31, 68, 123letrd 11416 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (𝑍 / 𝑉))
12564, 31, 31, 124leadd2dd 11876 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ ((𝑍 / 𝑉) + (𝑍 / 𝑉)))
12630rpcnd 13077 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑍 / 𝑉) ∈ ℂ)
1271262timesd 12507 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑍 / 𝑉)) = ((𝑍 / 𝑉) + (𝑍 / 𝑉)))
128125, 127breqtrrd 5176 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ (2 · (𝑍 / 𝑉)))
12931, 64readdcld 11288 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ∈ ℝ)
130 2re 12338 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
131 remulcl 11238 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (𝑍 / 𝑉) ∈ ℝ) → (2 · (𝑍 / 𝑉)) ∈ ℝ)
132130, 31, 131sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑍 / 𝑉)) ∈ ℝ)
133129, 132, 20lemul2d 13119 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ (2 · (𝑍 / 𝑉)) ↔ (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) ≤ (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉)))))
134128, 133mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) ≤ (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))))
13520rpcnd 13077 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℂ)
13663rpcnd 13077 . . . . . . . . . . . . . . . . 17 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℂ)
137135, 126, 136adddid 11283 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸)))))
13815rpcnne0d 13084 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐿 · 𝐸) ∈ ℂ ∧ (𝐿 · 𝐸) ≠ 0))
139 rpcnne0 13051 . . . . . . . . . . . . . . . . . . 19 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
14018, 139mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 ∈ ℂ ∧ 4 ≠ 0))
141 divcan6 11972 . . . . . . . . . . . . . . . . . 18 ((((𝐿 · 𝐸) ∈ ℂ ∧ (𝐿 · 𝐸) ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸))) = 1)
142138, 140, 141syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸))) = 1)
143142oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1))
144137, 143eqtrd 2775 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1))
145 2cnd 12342 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
146135, 145, 126mulassd 11282 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · 2) · (𝑍 / 𝑉)) = (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))))
14715rpcnd 13077 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 · 𝐸) ∈ ℂ)
148 2rp 13037 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ+
149 rpcnne0 13051 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
150148, 149mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
151 divdiv1 11976 . . . . . . . . . . . . . . . . . . . . 21 (((𝐿 · 𝐸) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐿 · 𝐸) / 2) / 2) = ((𝐿 · 𝐸) / (2 · 2)))
152147, 150, 150, 151syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐿 · 𝐸) / 2) / 2) = ((𝐿 · 𝐸) / (2 · 2)))
153 2t2e4 12428 . . . . . . . . . . . . . . . . . . . . 21 (2 · 2) = 4
154153oveq2i 7442 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 · 𝐸) / (2 · 2)) = ((𝐿 · 𝐸) / 4)
155152, 154eqtr2di 2792 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) / 4) = (((𝐿 · 𝐸) / 2) / 2))
156155oveq1d 7446 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐿 · 𝐸) / 4) · 2) = ((((𝐿 · 𝐸) / 2) / 2) · 2))
157147halfcld 12509 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℂ)
158150simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ≠ 0)
159157, 145, 158divcan1d 12042 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((𝐿 · 𝐸) / 2) / 2) · 2) = ((𝐿 · 𝐸) / 2))
160156, 159eqtrd 2775 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐿 · 𝐸) / 4) · 2) = ((𝐿 · 𝐸) / 2))
161160oveq1d 7446 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · 2) · (𝑍 / 𝑉)) = (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
162146, 161eqtr3d 2777 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))) = (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
163134, 144, 1623brtr3d 5179 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ≤ (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
164 flle 13836 . . . . . . . . . . . . . . 15 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
16545, 164syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
16652, 47, 60, 45, 163, 165le2addd 11880 . . . . . . . . . . . . 13 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ≤ ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
16758rpred 13075 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℝ)
16842rprecred 13086 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / (1 + (𝐿 · 𝐸))) ∈ ℝ)
169167, 168readdcld 11288 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) ∈ ℝ)
17015rpred 13075 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
17114rpred 13075 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 ∈ ℝ)
1728rpred 13075 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 ∈ ℝ)
173 eliooord 13443 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
1744, 173syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0 < 𝐿𝐿 < 1))
175174simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 < 1)
176172, 113, 14, 175ltmul1dd 13130 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐿 · 𝐸) < (1 · 𝐸))
17714rpcnd 13077 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 ∈ ℂ)
178177mullidd 11277 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1 · 𝐸) = 𝐸)
179176, 178breqtrd 5174 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 · 𝐸) < 𝐸)
18013simp3d 1143 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
181180simp1d 1141 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 ∈ (0(,)1))
182 eliooord 13443 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
183181, 182syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0 < 𝐸𝐸 < 1))
184183simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 < 1)
185170, 171, 113, 179, 184lttrd 11420 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · 𝐸) < 1)
186170, 113, 113, 185ltadd2dd 11418 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + (𝐿 · 𝐸)) < (1 + 1))
187 df-2 12327 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
188186, 187breqtrrdi 5190 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) < 2)
18942rpregt0d 13081 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 0 < (1 + (𝐿 · 𝐸))))
190130a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ)
191 2pos 12367 . . . . . . . . . . . . . . . . . . . 20 0 < 2
192191a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 2)
19315rpregt0d 13081 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) ∈ ℝ ∧ 0 < (𝐿 · 𝐸)))
194 ltdiv2 12152 . . . . . . . . . . . . . . . . . . 19 ((((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 0 < (1 + (𝐿 · 𝐸))) ∧ (2 ∈ ℝ ∧ 0 < 2) ∧ ((𝐿 · 𝐸) ∈ ℝ ∧ 0 < (𝐿 · 𝐸))) → ((1 + (𝐿 · 𝐸)) < 2 ↔ ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸)))))
195189, 190, 192, 193, 194syl121anc 1374 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) < 2 ↔ ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸)))))
196188, 195mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))))
19742rpcnd 13077 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℂ)
19842rpcnne0d 13084 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0))
199 divsubdir 11959 . . . . . . . . . . . . . . . . . . 19 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0)) → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))))
200197, 49, 198, 199syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))))
201 ax-1cn 11211 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
202 pncan2 11513 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ (𝐿 · 𝐸) ∈ ℂ) → ((1 + (𝐿 · 𝐸)) − 1) = (𝐿 · 𝐸))
203201, 147, 202sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) − 1) = (𝐿 · 𝐸))
204203oveq1d 7446 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))))
205 divid 11951 . . . . . . . . . . . . . . . . . . . 20 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0) → ((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) = 1)
206198, 205syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) = 1)
207206oveq1d 7446 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))) = (1 − (1 / (1 + (𝐿 · 𝐸)))))
208200, 204, 2073eqtr3d 2783 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))) = (1 − (1 / (1 + (𝐿 · 𝐸)))))
209196, 208breqtrd 5174 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) < (1 − (1 / (1 + (𝐿 · 𝐸)))))
210167, 168, 113ltaddsubd 11861 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) < 1 ↔ ((𝐿 · 𝐸) / 2) < (1 − (1 / (1 + (𝐿 · 𝐸))))))
211209, 210mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) < 1)
212169, 113, 30, 211ltmul1dd 13130 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) < (1 · (𝑍 / 𝑉)))
213 reccl 11927 . . . . . . . . . . . . . . . . 17 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0) → (1 / (1 + (𝐿 · 𝐸))) ∈ ℂ)
214198, 213syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / (1 + (𝐿 · 𝐸))) ∈ ℂ)
215157, 214, 126adddird 11284 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉))))
216197, 111mulcomd 11280 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) = (𝑉 · (1 + (𝐿 · 𝐸))))
217216oveq2d 7447 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
21828rpcnd 13077 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℂ)
21929rpcnne0d 13084 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑉 ∈ ℂ ∧ 𝑉 ≠ 0))
220 divdiv1 11976 . . . . . . . . . . . . . . . . . 18 ((𝑍 ∈ ℂ ∧ (𝑉 ∈ ℂ ∧ 𝑉 ≠ 0) ∧ ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0)) → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
221218, 219, 198, 220syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
22242rpne0d 13080 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) ≠ 0)
223126, 197, 222divrec2d 12045 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉)))
224217, 221, 2233eqtr2d 2781 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) = ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉)))
225224oveq2d 7447 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉))))
226215, 225eqtr4d 2778 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
227126mullidd 11277 . . . . . . . . . . . . . 14 (𝜑 → (1 · (𝑍 / 𝑉)) = (𝑍 / 𝑉))
228212, 226, 2273brtr3d 5179 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) < (𝑍 / 𝑉))
22953, 61, 31, 166, 228lelttrd 11417 . . . . . . . . . . . 12 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (𝑍 / 𝑉))
230 fllep1 13838 . . . . . . . . . . . . 13 ((𝑍 / 𝑉) ∈ ℝ → (𝑍 / 𝑉) ≤ ((⌊‘(𝑍 / 𝑉)) + 1))
23131, 230syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑍 / 𝑉) ≤ ((⌊‘(𝑍 / 𝑉)) + 1))
23253, 31, 57, 229, 231ltletrd 11419 . . . . . . . . . . 11 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < ((⌊‘(𝑍 / 𝑉)) + 1))
23350, 232eqbrtrd 5170 . . . . . . . . . 10 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) < ((⌊‘(𝑍 / 𝑉)) + 1))
23432, 47readdcld 11288 . . . . . . . . . . 11 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ∈ ℝ)
235234, 55, 113ltadd1d 11854 . . . . . . . . . 10 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)) ↔ (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) < ((⌊‘(𝑍 / 𝑉)) + 1)))
236233, 235mpbird 257 . . . . . . . . 9 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)))
23732, 47, 55ltaddsubd 11861 . . . . . . . . 9 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)) ↔ (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))))
238236, 237mpbid 232 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
23931flcld 13835 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℤ)
240 fzval3 13770 . . . . . . . . . . . 12 ((⌊‘(𝑍 / 𝑉)) ∈ ℤ → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
241239, 240syl 17 . . . . . . . . . . 11 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
24233, 241eqtrid 2787 . . . . . . . . . 10 (𝜑𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
243242fveq2d 6911 . . . . . . . . 9 (𝜑 → (♯‘𝐼) = (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))))
244 flword2 13850 . . . . . . . . . . . 12 (((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ (𝑍 / 𝑉) ∈ ℝ ∧ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ (𝑍 / 𝑉)) → (⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
24545, 31, 122, 244syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
246 eluzp1p1 12904 . . . . . . . . . . 11 ((⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
247245, 246syl 17 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
248 hashfzo 14465 . . . . . . . . . 10 (((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)) → (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))) = (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
249247, 248syl 17 . . . . . . . . 9 (𝜑 → (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))) = (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
25055recnd 11287 . . . . . . . . . 10 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℂ)
251250, 48, 49pnpcan2d 11656 . . . . . . . . 9 (𝜑 → (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)) = ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
252243, 249, 2513eqtrd 2779 . . . . . . . 8 (𝜑 → (♯‘𝐼) = ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
253238, 252breqtrrd 5176 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < (♯‘𝐼))
25432, 38, 253ltled 11407 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ≤ (♯‘𝐼))
25521, 38, 30lemuldivd 13124 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ≤ (♯‘𝐼) ↔ ((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉))))
256254, 255mpbid 232 . . . . 5 (𝜑 → ((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)))
25729rpred 13075 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ ℝ)
25869, 76, 66, 94, 100ltletrd 11419 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (√‘𝑍))
259257, 69, 66, 119, 258lttrd 11420 . . . . . . . . . . . . . . 15 (𝜑𝑉 < (√‘𝑍))
260257, 66, 259ltled 11407 . . . . . . . . . . . . . 14 (𝜑𝑉 ≤ (√‘𝑍))
26129rprege0d 13082 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉))
26265rprege0d 13082 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
263 le2sq 14171 . . . . . . . . . . . . . . 15 (((𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → (𝑉 ≤ (√‘𝑍) ↔ (𝑉↑2) ≤ ((√‘𝑍)↑2)))
264261, 262, 263syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ≤ (√‘𝑍) ↔ (𝑉↑2) ≤ ((√‘𝑍)↑2)))
265260, 264mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑉↑2) ≤ ((√‘𝑍)↑2))
266 resqrtth 15291 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
267104, 266syl 17 . . . . . . . . . . . . 13 (𝜑 → ((√‘𝑍)↑2) = 𝑍)
268265, 267breqtrd 5174 . . . . . . . . . . . 12 (𝜑 → (𝑉↑2) ≤ 𝑍)
269 2z 12647 . . . . . . . . . . . . . . 15 2 ∈ ℤ
270 rpexpcl 14118 . . . . . . . . . . . . . . 15 ((𝑉 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑉↑2) ∈ ℝ+)
27129, 269, 270sylancl 586 . . . . . . . . . . . . . 14 (𝜑 → (𝑉↑2) ∈ ℝ+)
272271rpred 13075 . . . . . . . . . . . . 13 (𝜑 → (𝑉↑2) ∈ ℝ)
273272, 108, 28lemul2d 13119 . . . . . . . . . . . 12 (𝜑 → ((𝑉↑2) ≤ 𝑍 ↔ (𝑍 · (𝑉↑2)) ≤ (𝑍 · 𝑍)))
274268, 273mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑍 · (𝑉↑2)) ≤ (𝑍 · 𝑍))
275218sqvald 14180 . . . . . . . . . . 11 (𝜑 → (𝑍↑2) = (𝑍 · 𝑍))
276274, 275breqtrrd 5176 . . . . . . . . . 10 (𝜑 → (𝑍 · (𝑉↑2)) ≤ (𝑍↑2))
277108resqcld 14162 . . . . . . . . . . 11 (𝜑 → (𝑍↑2) ∈ ℝ)
278108, 277, 271lemuldivd 13124 . . . . . . . . . 10 (𝜑 → ((𝑍 · (𝑉↑2)) ≤ (𝑍↑2) ↔ 𝑍 ≤ ((𝑍↑2) / (𝑉↑2))))
279276, 278mpbid 232 . . . . . . . . 9 (𝜑𝑍 ≤ ((𝑍↑2) / (𝑉↑2)))
28029rpne0d 13080 . . . . . . . . . 10 (𝜑𝑉 ≠ 0)
281218, 111, 280sqdivd 14196 . . . . . . . . 9 (𝜑 → ((𝑍 / 𝑉)↑2) = ((𝑍↑2) / (𝑉↑2)))
282279, 281breqtrrd 5176 . . . . . . . 8 (𝜑𝑍 ≤ ((𝑍 / 𝑉)↑2))
283 rpexpcl 14118 . . . . . . . . . 10 (((𝑍 / 𝑉) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑍 / 𝑉)↑2) ∈ ℝ+)
28430, 269, 283sylancl 586 . . . . . . . . 9 (𝜑 → ((𝑍 / 𝑉)↑2) ∈ ℝ+)
28528, 284logled 26684 . . . . . . . 8 (𝜑 → (𝑍 ≤ ((𝑍 / 𝑉)↑2) ↔ (log‘𝑍) ≤ (log‘((𝑍 / 𝑉)↑2))))
286282, 285mpbid 232 . . . . . . 7 (𝜑 → (log‘𝑍) ≤ (log‘((𝑍 / 𝑉)↑2)))
287 relogexp 26653 . . . . . . . 8 (((𝑍 / 𝑉) ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘((𝑍 / 𝑉)↑2)) = (2 · (log‘(𝑍 / 𝑉))))
28830, 269, 287sylancl 586 . . . . . . 7 (𝜑 → (log‘((𝑍 / 𝑉)↑2)) = (2 · (log‘(𝑍 / 𝑉))))
289286, 288breqtrd 5174 . . . . . 6 (𝜑 → (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉))))
29028relogcld 26680 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ)
29130relogcld 26680 . . . . . . 7 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℝ)
292 ledivmul 12142 . . . . . . 7 (((log‘𝑍) ∈ ℝ ∧ (log‘(𝑍 / 𝑉)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)) ↔ (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉)))))
293290, 291, 190, 192, 292syl112anc 1373 . . . . . 6 (𝜑 → (((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)) ↔ (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉)))))
294289, 293mpbird 257 . . . . 5 (𝜑 → ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)))
29520rprege0d 13082 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) ∈ ℝ ∧ 0 ≤ ((𝐿 · 𝐸) / 4)))
29638, 30rerpdivcld 13106 . . . . . 6 (𝜑 → ((♯‘𝐼) / (𝑍 / 𝑉)) ∈ ℝ)
29727simp2d 1142 . . . . . . . . . 10 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
298297simp1d 1141 . . . . . . . . 9 (𝜑 → 1 < 𝑍)
299108, 298rplogcld 26686 . . . . . . . 8 (𝜑 → (log‘𝑍) ∈ ℝ+)
300299rphalfcld 13087 . . . . . . 7 (𝜑 → ((log‘𝑍) / 2) ∈ ℝ+)
301300rprege0d 13082 . . . . . 6 (𝜑 → (((log‘𝑍) / 2) ∈ ℝ ∧ 0 ≤ ((log‘𝑍) / 2)))
302 lemul12a 12123 . . . . . 6 ((((((𝐿 · 𝐸) / 4) ∈ ℝ ∧ 0 ≤ ((𝐿 · 𝐸) / 4)) ∧ ((♯‘𝐼) / (𝑍 / 𝑉)) ∈ ℝ) ∧ ((((log‘𝑍) / 2) ∈ ℝ ∧ 0 ≤ ((log‘𝑍) / 2)) ∧ (log‘(𝑍 / 𝑉)) ∈ ℝ)) → ((((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)) ∧ ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉)))))
303295, 296, 301, 291, 302syl22anc 839 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)) ∧ ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉)))))
304256, 294, 303mp2and 699 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
305299rpcnd 13077 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
306 8nn 12359 . . . . . . . 8 8 ∈ ℕ
307 nnrp 13044 . . . . . . . 8 (8 ∈ ℕ → 8 ∈ ℝ+)
308306, 307ax-mp 5 . . . . . . 7 8 ∈ ℝ+
309 rpcnne0 13051 . . . . . . 7 (8 ∈ ℝ+ → (8 ∈ ℂ ∧ 8 ≠ 0))
310308, 309mp1i 13 . . . . . 6 (𝜑 → (8 ∈ ℂ ∧ 8 ≠ 0))
311 div23 11939 . . . . . 6 (((𝐿 · 𝐸) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ ∧ (8 ∈ ℂ ∧ 8 ≠ 0)) → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 8) · (log‘𝑍)))
312147, 305, 310, 311syl3anc 1370 . . . . 5 (𝜑 → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 8) · (log‘𝑍)))
313 divmuldiv 11965 . . . . . . 7 ((((𝐿 · 𝐸) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ) ∧ ((4 ∈ ℂ ∧ 4 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)))
314147, 305, 140, 150, 313syl22anc 839 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)))
315 4t2e8 12432 . . . . . . 7 (4 · 2) = 8
316315oveq2i 7442 . . . . . 6 (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / 8)
317314, 316eqtr2di 2792 . . . . 5 (𝜑 → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)))
318312, 317eqtr3d 2777 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) = (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)))
31938recnd 11287 . . . . 5 (𝜑 → (♯‘𝐼) ∈ ℂ)
320291recnd 11287 . . . . 5 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℂ)
32130rpcnne0d 13084 . . . . 5 (𝜑 → ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0))
322 divass 11938 . . . . . 6 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → (((♯‘𝐼) · (log‘(𝑍 / 𝑉))) / (𝑍 / 𝑉)) = ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))
323 div23 11939 . . . . . 6 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → (((♯‘𝐼) · (log‘(𝑍 / 𝑉))) / (𝑍 / 𝑉)) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
324322, 323eqtr3d 2777 . . . . 5 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
325319, 320, 321, 324syl3anc 1370 . . . 4 (𝜑 → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
326304, 318, 3253brtr4d 5180 . . 3 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ≤ ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))
327 rpdivcl 13058 . . . . . . 7 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
32815, 308, 327sylancl 586 . . . . . 6 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
329328, 299rpmulcld 13091 . . . . 5 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
330329rpred 13075 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ)
331291, 30rerpdivcld 13106 . . . . 5 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
33238, 331remulcld 11289 . . . 4 (𝜑 → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
333180simp3d 1143 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
334330, 332, 333lemul2d 13119 . . 3 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) ≤ ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ↔ ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))))
335326, 334mpbid 232 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
336333rpcnd 13077 . . 3 (𝜑 → (𝑈𝐸) ∈ ℂ)
337331recnd 11287 . . 3 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℂ)
338336, 319, 337mul12d 11468 . 2 (𝜑 → ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
339335, 338breqtrd 5174 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  3c3 12320  4c4 12321  8c8 12325  0cn0 12524  cz 12611  cdc 12731  cuz 12876  +crp 13032  (,)cioo 13384  [,)cico 13386  [,]cicc 13387  ...cfz 13544  ..^cfzo 13691  cfl 13827  cexp 14099  chash 14366  csqrt 15269  abscabs 15270  expce 16094  eceu 16095  logclog 26611  ψcchp 27151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-e 16101  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613
This theorem is referenced by:  pntlemj  27662
  Copyright terms: Public domain W3C validator