MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemr Structured version   Visualization version   GIF version

Theorem pntlemr 26759
Description: Lemma for pntlemj 26760. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemr (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝐽   𝑦,𝑢,𝑧,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑂   𝑧,𝑁   𝑢,𝑅,𝑦,𝑧   𝑢,𝑉   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑧,𝑌   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑎)   𝐶(𝑦,𝑢,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemr
StepHypRef Expression
1 pntlem1.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . . . . 13 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . . . . 13 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
71, 2, 3, 4, 5, 6pntlemd 26751 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
87simp1d 1141 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
9 pntlem1.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ+)
10 pntlem1.u2 . . . . . . . . . . . . 13 (𝜑𝑈𝐴)
11 pntlem1.e . . . . . . . . . . . . 13 𝐸 = (𝑈 / 𝐷)
12 pntlem1.k . . . . . . . . . . . . 13 𝐾 = (exp‘(𝐵 / 𝐸))
131, 2, 3, 4, 5, 6, 9, 10, 11, 12pntlemc 26752 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1413simp1d 1141 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
158, 14rpmulcld 12797 . . . . . . . . . 10 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
16 4re 12066 . . . . . . . . . . 11 4 ∈ ℝ
17 4pos 12089 . . . . . . . . . . 11 0 < 4
1816, 17elrpii 12742 . . . . . . . . . 10 4 ∈ ℝ+
19 rpdivcl 12764 . . . . . . . . . 10 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 4 ∈ ℝ+) → ((𝐿 · 𝐸) / 4) ∈ ℝ+)
2015, 18, 19sylancl 586 . . . . . . . . 9 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℝ+)
2120rpred 12781 . . . . . . . 8 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℝ)
22 pntlem1.y . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
23 pntlem1.x . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
24 pntlem1.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
25 pntlem1.w . . . . . . . . . . . 12 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
26 pntlem1.z . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑊[,)+∞))
271, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26pntlemb 26754 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2827simp1d 1141 . . . . . . . . . 10 (𝜑𝑍 ∈ ℝ+)
29 pntlem1.v . . . . . . . . . 10 (𝜑𝑉 ∈ ℝ+)
3028, 29rpdivcld 12798 . . . . . . . . 9 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
3130rpred 12781 . . . . . . . 8 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
3221, 31remulcld 11014 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℝ)
33 pntlem1.i . . . . . . . . . 10 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
34 fzfid 13702 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ∈ Fin)
3533, 34eqeltrid 2844 . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
36 hashcl 14080 . . . . . . . . 9 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
3735, 36syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐼) ∈ ℕ0)
3837nn0red 12303 . . . . . . 7 (𝜑 → (♯‘𝐼) ∈ ℝ)
3932recnd 11012 . . . . . . . . . . . 12 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℂ)
40 1rp 12743 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
41 rpaddcl 12761 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
4240, 15, 41sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
4342, 29rpmulcld 12797 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
4428, 43rpdivcld 12798 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
4544rpred 12781 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
46 reflcl 13525 . . . . . . . . . . . . . 14 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
4847recnd 11012 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℂ)
49 1cnd 10979 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
5039, 48, 49add32d 11211 . . . . . . . . . . 11 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) = (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
51 peano2re 11157 . . . . . . . . . . . . . 14 ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℝ → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ∈ ℝ)
5232, 51syl 17 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ∈ ℝ)
5352, 47readdcld 11013 . . . . . . . . . . . 12 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ∈ ℝ)
54 reflcl 13525 . . . . . . . . . . . . . 14 ((𝑍 / 𝑉) ∈ ℝ → (⌊‘(𝑍 / 𝑉)) ∈ ℝ)
5531, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℝ)
56 peano2re 11157 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / 𝑉)) ∈ ℝ → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ ℝ)
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ ℝ)
5815rphalfcld 12793 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℝ+)
5958, 30rpmulcld 12797 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) ∈ ℝ+)
6059rpred 12781 . . . . . . . . . . . . . 14 (𝜑 → (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) ∈ ℝ)
6160, 45readdcld 11013 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
62 rpdivcl 12764 . . . . . . . . . . . . . . . . . . . 20 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
6318, 15, 62sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
6463rpred 12781 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ)
6528rpsqrtcld 15132 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑍) ∈ ℝ+)
6665rpred 12781 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (√‘𝑍) ∈ ℝ)
6727simp3d 1143 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
6867simp1d 1141 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (√‘𝑍))
6943rpred 12781 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
7013simp2d 1142 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐾 ∈ ℝ+)
71 pntlem1.j . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ (𝑀..^𝑁))
72 elfzoelz 13396 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐽 ∈ ℤ)
7473peano2zd 12438 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐽 + 1) ∈ ℤ)
7570, 74rpexpcld 13971 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
7675rpred 12781 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
77 pntlem1.V . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
7877simplrd 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
7970rpcnd 12783 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐾 ∈ ℂ)
8070, 73rpexpcld 13971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝐾𝐽) ∈ ℝ+)
8180rpcnd 12783 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐾𝐽) ∈ ℂ)
8279, 81mulcomd 11005 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
83 pntlem1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
84 pntlem1.n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
851, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26, 83, 84pntlemg 26755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
8685simp1d 1141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑀 ∈ ℕ)
87 elfzouz 13400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
8871, 87syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐽 ∈ (ℤ𝑀))
89 eluznn 12667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
9086, 88, 89syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐽 ∈ ℕ)
9190nnnn0d 12302 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ ℕ0)
9279, 91expp1d 13874 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
9382, 92eqtr4d 2782 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
9478, 93breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
9569, 76, 94ltled 11132 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
96 fzofzp1 13493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 ∈ (𝑀..^𝑁) → (𝐽 + 1) ∈ (𝑀...𝑁))
9771, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐽 + 1) ∈ (𝑀...𝑁))
981, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26, 83, 84pntlemh 26756 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐽 + 1) ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
9997, 98mpdan 684 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
10099simprd 496 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍))
10169, 76, 66, 95, 100letrd 11141 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍))
10269, 66, 65lemul2d 12825 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍) ↔ ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍))))
103101, 102mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍)))
10428rprege0d 12788 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
105 remsqsqrt 14977 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
107103, 106breqtrd 5101 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍)
10828rpred 12781 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑍 ∈ ℝ)
10966, 108, 43lemuldivd 12830 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍 ↔ (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
110107, 109mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
11129rpcnd 12783 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑉 ∈ ℂ)
112111mulid2d 11002 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 𝑉) = 𝑉)
113 1red 10985 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℝ)
11442rpred 12781 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
115 1re 10984 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ
116 ltaddrp 12776 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℝ ∧ (𝐿 · 𝐸) ∈ ℝ+) → 1 < (1 + (𝐿 · 𝐸)))
117115, 15, 116sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < (1 + (𝐿 · 𝐸)))
118113, 114, 29, 117ltmul1dd 12836 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 𝑉) < ((1 + (𝐿 · 𝐸)) · 𝑉))
119112, 118eqbrtrrd 5099 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑉 < ((1 + (𝐿 · 𝐸)) · 𝑉))
12029, 43, 28ltdiv2d 12804 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑉 < ((1 + (𝐿 · 𝐸)) · 𝑉) ↔ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) < (𝑍 / 𝑉)))
121119, 120mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) < (𝑍 / 𝑉))
12245, 31, 121ltled 11132 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ (𝑍 / 𝑉))
12366, 45, 31, 110, 122letrd 11141 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑉))
12464, 66, 31, 68, 123letrd 11141 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (𝑍 / 𝑉))
12564, 31, 31, 124leadd2dd 11599 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ ((𝑍 / 𝑉) + (𝑍 / 𝑉)))
12630rpcnd 12783 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑍 / 𝑉) ∈ ℂ)
1271262timesd 12225 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑍 / 𝑉)) = ((𝑍 / 𝑉) + (𝑍 / 𝑉)))
128125, 127breqtrrd 5103 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ (2 · (𝑍 / 𝑉)))
12931, 64readdcld 11013 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ∈ ℝ)
130 2re 12056 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
131 remulcl 10965 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (𝑍 / 𝑉) ∈ ℝ) → (2 · (𝑍 / 𝑉)) ∈ ℝ)
132130, 31, 131sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑍 / 𝑉)) ∈ ℝ)
133129, 132, 20lemul2d 12825 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ (2 · (𝑍 / 𝑉)) ↔ (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) ≤ (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉)))))
134128, 133mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) ≤ (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))))
13520rpcnd 12783 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℂ)
13663rpcnd 12783 . . . . . . . . . . . . . . . . 17 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℂ)
137135, 126, 136adddid 11008 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸)))))
13815rpcnne0d 12790 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐿 · 𝐸) ∈ ℂ ∧ (𝐿 · 𝐸) ≠ 0))
139 rpcnne0 12757 . . . . . . . . . . . . . . . . . . 19 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
14018, 139mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 ∈ ℂ ∧ 4 ≠ 0))
141 divcan6 11691 . . . . . . . . . . . . . . . . . 18 ((((𝐿 · 𝐸) ∈ ℂ ∧ (𝐿 · 𝐸) ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸))) = 1)
142138, 140, 141syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸))) = 1)
143142oveq2d 7300 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1))
144137, 143eqtrd 2779 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1))
145 2cnd 12060 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
146135, 145, 126mulassd 11007 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · 2) · (𝑍 / 𝑉)) = (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))))
14715rpcnd 12783 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 · 𝐸) ∈ ℂ)
148 2rp 12744 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ+
149 rpcnne0 12757 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
150148, 149mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
151 divdiv1 11695 . . . . . . . . . . . . . . . . . . . . 21 (((𝐿 · 𝐸) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐿 · 𝐸) / 2) / 2) = ((𝐿 · 𝐸) / (2 · 2)))
152147, 150, 150, 151syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐿 · 𝐸) / 2) / 2) = ((𝐿 · 𝐸) / (2 · 2)))
153 2t2e4 12146 . . . . . . . . . . . . . . . . . . . . 21 (2 · 2) = 4
154153oveq2i 7295 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 · 𝐸) / (2 · 2)) = ((𝐿 · 𝐸) / 4)
155152, 154eqtr2di 2796 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) / 4) = (((𝐿 · 𝐸) / 2) / 2))
156155oveq1d 7299 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐿 · 𝐸) / 4) · 2) = ((((𝐿 · 𝐸) / 2) / 2) · 2))
157147halfcld 12227 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℂ)
158150simprd 496 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ≠ 0)
159157, 145, 158divcan1d 11761 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((𝐿 · 𝐸) / 2) / 2) · 2) = ((𝐿 · 𝐸) / 2))
160156, 159eqtrd 2779 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐿 · 𝐸) / 4) · 2) = ((𝐿 · 𝐸) / 2))
161160oveq1d 7299 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · 2) · (𝑍 / 𝑉)) = (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
162146, 161eqtr3d 2781 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))) = (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
163134, 144, 1623brtr3d 5106 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ≤ (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
164 flle 13528 . . . . . . . . . . . . . . 15 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
16545, 164syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
16652, 47, 60, 45, 163, 165le2addd 11603 . . . . . . . . . . . . 13 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ≤ ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
16758rpred 12781 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℝ)
16842rprecred 12792 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / (1 + (𝐿 · 𝐸))) ∈ ℝ)
169167, 168readdcld 11013 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) ∈ ℝ)
17015rpred 12781 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
17114rpred 12781 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 ∈ ℝ)
1728rpred 12781 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 ∈ ℝ)
173 eliooord 13147 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
1744, 173syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0 < 𝐿𝐿 < 1))
175174simprd 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 < 1)
176172, 113, 14, 175ltmul1dd 12836 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐿 · 𝐸) < (1 · 𝐸))
17714rpcnd 12783 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 ∈ ℂ)
178177mulid2d 11002 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1 · 𝐸) = 𝐸)
179176, 178breqtrd 5101 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 · 𝐸) < 𝐸)
18013simp3d 1143 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
181180simp1d 1141 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 ∈ (0(,)1))
182 eliooord 13147 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
183181, 182syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0 < 𝐸𝐸 < 1))
184183simprd 496 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 < 1)
185170, 171, 113, 179, 184lttrd 11145 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · 𝐸) < 1)
186170, 113, 113, 185ltadd2dd 11143 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + (𝐿 · 𝐸)) < (1 + 1))
187 df-2 12045 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
188186, 187breqtrrdi 5117 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) < 2)
18942rpregt0d 12787 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 0 < (1 + (𝐿 · 𝐸))))
190130a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ)
191 2pos 12085 . . . . . . . . . . . . . . . . . . . 20 0 < 2
192191a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 2)
19315rpregt0d 12787 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) ∈ ℝ ∧ 0 < (𝐿 · 𝐸)))
194 ltdiv2 11870 . . . . . . . . . . . . . . . . . . 19 ((((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 0 < (1 + (𝐿 · 𝐸))) ∧ (2 ∈ ℝ ∧ 0 < 2) ∧ ((𝐿 · 𝐸) ∈ ℝ ∧ 0 < (𝐿 · 𝐸))) → ((1 + (𝐿 · 𝐸)) < 2 ↔ ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸)))))
195189, 190, 192, 193, 194syl121anc 1374 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) < 2 ↔ ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸)))))
196188, 195mpbid 231 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))))
19742rpcnd 12783 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℂ)
19842rpcnne0d 12790 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0))
199 divsubdir 11678 . . . . . . . . . . . . . . . . . . 19 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0)) → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))))
200197, 49, 198, 199syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))))
201 ax-1cn 10938 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
202 pncan2 11237 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ (𝐿 · 𝐸) ∈ ℂ) → ((1 + (𝐿 · 𝐸)) − 1) = (𝐿 · 𝐸))
203201, 147, 202sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) − 1) = (𝐿 · 𝐸))
204203oveq1d 7299 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))))
205 divid 11671 . . . . . . . . . . . . . . . . . . . 20 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0) → ((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) = 1)
206198, 205syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) = 1)
207206oveq1d 7299 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))) = (1 − (1 / (1 + (𝐿 · 𝐸)))))
208200, 204, 2073eqtr3d 2787 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))) = (1 − (1 / (1 + (𝐿 · 𝐸)))))
209196, 208breqtrd 5101 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) < (1 − (1 / (1 + (𝐿 · 𝐸)))))
210167, 168, 113ltaddsubd 11584 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) < 1 ↔ ((𝐿 · 𝐸) / 2) < (1 − (1 / (1 + (𝐿 · 𝐸))))))
211209, 210mpbird 256 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) < 1)
212169, 113, 30, 211ltmul1dd 12836 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) < (1 · (𝑍 / 𝑉)))
213 reccl 11649 . . . . . . . . . . . . . . . . 17 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0) → (1 / (1 + (𝐿 · 𝐸))) ∈ ℂ)
214198, 213syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / (1 + (𝐿 · 𝐸))) ∈ ℂ)
215157, 214, 126adddird 11009 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉))))
216197, 111mulcomd 11005 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) = (𝑉 · (1 + (𝐿 · 𝐸))))
217216oveq2d 7300 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
21828rpcnd 12783 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℂ)
21929rpcnne0d 12790 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑉 ∈ ℂ ∧ 𝑉 ≠ 0))
220 divdiv1 11695 . . . . . . . . . . . . . . . . . 18 ((𝑍 ∈ ℂ ∧ (𝑉 ∈ ℂ ∧ 𝑉 ≠ 0) ∧ ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0)) → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
221218, 219, 198, 220syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
22242rpne0d 12786 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) ≠ 0)
223126, 197, 222divrec2d 11764 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉)))
224217, 221, 2233eqtr2d 2785 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) = ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉)))
225224oveq2d 7300 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉))))
226215, 225eqtr4d 2782 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
227126mulid2d 11002 . . . . . . . . . . . . . 14 (𝜑 → (1 · (𝑍 / 𝑉)) = (𝑍 / 𝑉))
228212, 226, 2273brtr3d 5106 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) < (𝑍 / 𝑉))
22953, 61, 31, 166, 228lelttrd 11142 . . . . . . . . . . . 12 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (𝑍 / 𝑉))
230 fllep1 13530 . . . . . . . . . . . . 13 ((𝑍 / 𝑉) ∈ ℝ → (𝑍 / 𝑉) ≤ ((⌊‘(𝑍 / 𝑉)) + 1))
23131, 230syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑍 / 𝑉) ≤ ((⌊‘(𝑍 / 𝑉)) + 1))
23253, 31, 57, 229, 231ltletrd 11144 . . . . . . . . . . 11 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < ((⌊‘(𝑍 / 𝑉)) + 1))
23350, 232eqbrtrd 5097 . . . . . . . . . 10 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) < ((⌊‘(𝑍 / 𝑉)) + 1))
23432, 47readdcld 11013 . . . . . . . . . . 11 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ∈ ℝ)
235234, 55, 113ltadd1d 11577 . . . . . . . . . 10 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)) ↔ (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) < ((⌊‘(𝑍 / 𝑉)) + 1)))
236233, 235mpbird 256 . . . . . . . . 9 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)))
23732, 47, 55ltaddsubd 11584 . . . . . . . . 9 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)) ↔ (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))))
238236, 237mpbid 231 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
23931flcld 13527 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℤ)
240 fzval3 13465 . . . . . . . . . . . 12 ((⌊‘(𝑍 / 𝑉)) ∈ ℤ → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
241239, 240syl 17 . . . . . . . . . . 11 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
24233, 241eqtrid 2791 . . . . . . . . . 10 (𝜑𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
243242fveq2d 6787 . . . . . . . . 9 (𝜑 → (♯‘𝐼) = (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))))
244 flword2 13542 . . . . . . . . . . . 12 (((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ (𝑍 / 𝑉) ∈ ℝ ∧ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ (𝑍 / 𝑉)) → (⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
24545, 31, 122, 244syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
246 eluzp1p1 12619 . . . . . . . . . . 11 ((⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
247245, 246syl 17 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
248 hashfzo 14153 . . . . . . . . . 10 (((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)) → (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))) = (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
249247, 248syl 17 . . . . . . . . 9 (𝜑 → (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))) = (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
25055recnd 11012 . . . . . . . . . 10 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℂ)
251250, 48, 49pnpcan2d 11379 . . . . . . . . 9 (𝜑 → (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)) = ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
252243, 249, 2513eqtrd 2783 . . . . . . . 8 (𝜑 → (♯‘𝐼) = ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
253238, 252breqtrrd 5103 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < (♯‘𝐼))
25432, 38, 253ltled 11132 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ≤ (♯‘𝐼))
25521, 38, 30lemuldivd 12830 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ≤ (♯‘𝐼) ↔ ((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉))))
256254, 255mpbid 231 . . . . 5 (𝜑 → ((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)))
25729rpred 12781 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ ℝ)
25869, 76, 66, 94, 100ltletrd 11144 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (√‘𝑍))
259257, 69, 66, 119, 258lttrd 11145 . . . . . . . . . . . . . . 15 (𝜑𝑉 < (√‘𝑍))
260257, 66, 259ltled 11132 . . . . . . . . . . . . . 14 (𝜑𝑉 ≤ (√‘𝑍))
26129rprege0d 12788 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉))
26265rprege0d 12788 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
263 le2sq 13862 . . . . . . . . . . . . . . 15 (((𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → (𝑉 ≤ (√‘𝑍) ↔ (𝑉↑2) ≤ ((√‘𝑍)↑2)))
264261, 262, 263syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ≤ (√‘𝑍) ↔ (𝑉↑2) ≤ ((√‘𝑍)↑2)))
265260, 264mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝑉↑2) ≤ ((√‘𝑍)↑2))
266 resqrtth 14976 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
267104, 266syl 17 . . . . . . . . . . . . 13 (𝜑 → ((√‘𝑍)↑2) = 𝑍)
268265, 267breqtrd 5101 . . . . . . . . . . . 12 (𝜑 → (𝑉↑2) ≤ 𝑍)
269 2z 12361 . . . . . . . . . . . . . . 15 2 ∈ ℤ
270 rpexpcl 13810 . . . . . . . . . . . . . . 15 ((𝑉 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑉↑2) ∈ ℝ+)
27129, 269, 270sylancl 586 . . . . . . . . . . . . . 14 (𝜑 → (𝑉↑2) ∈ ℝ+)
272271rpred 12781 . . . . . . . . . . . . 13 (𝜑 → (𝑉↑2) ∈ ℝ)
273272, 108, 28lemul2d 12825 . . . . . . . . . . . 12 (𝜑 → ((𝑉↑2) ≤ 𝑍 ↔ (𝑍 · (𝑉↑2)) ≤ (𝑍 · 𝑍)))
274268, 273mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑍 · (𝑉↑2)) ≤ (𝑍 · 𝑍))
275218sqvald 13870 . . . . . . . . . . 11 (𝜑 → (𝑍↑2) = (𝑍 · 𝑍))
276274, 275breqtrrd 5103 . . . . . . . . . 10 (𝜑 → (𝑍 · (𝑉↑2)) ≤ (𝑍↑2))
277108resqcld 13974 . . . . . . . . . . 11 (𝜑 → (𝑍↑2) ∈ ℝ)
278108, 277, 271lemuldivd 12830 . . . . . . . . . 10 (𝜑 → ((𝑍 · (𝑉↑2)) ≤ (𝑍↑2) ↔ 𝑍 ≤ ((𝑍↑2) / (𝑉↑2))))
279276, 278mpbid 231 . . . . . . . . 9 (𝜑𝑍 ≤ ((𝑍↑2) / (𝑉↑2)))
28029rpne0d 12786 . . . . . . . . . 10 (𝜑𝑉 ≠ 0)
281218, 111, 280sqdivd 13886 . . . . . . . . 9 (𝜑 → ((𝑍 / 𝑉)↑2) = ((𝑍↑2) / (𝑉↑2)))
282279, 281breqtrrd 5103 . . . . . . . 8 (𝜑𝑍 ≤ ((𝑍 / 𝑉)↑2))
283 rpexpcl 13810 . . . . . . . . . 10 (((𝑍 / 𝑉) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑍 / 𝑉)↑2) ∈ ℝ+)
28430, 269, 283sylancl 586 . . . . . . . . 9 (𝜑 → ((𝑍 / 𝑉)↑2) ∈ ℝ+)
28528, 284logled 25791 . . . . . . . 8 (𝜑 → (𝑍 ≤ ((𝑍 / 𝑉)↑2) ↔ (log‘𝑍) ≤ (log‘((𝑍 / 𝑉)↑2))))
286282, 285mpbid 231 . . . . . . 7 (𝜑 → (log‘𝑍) ≤ (log‘((𝑍 / 𝑉)↑2)))
287 relogexp 25760 . . . . . . . 8 (((𝑍 / 𝑉) ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘((𝑍 / 𝑉)↑2)) = (2 · (log‘(𝑍 / 𝑉))))
28830, 269, 287sylancl 586 . . . . . . 7 (𝜑 → (log‘((𝑍 / 𝑉)↑2)) = (2 · (log‘(𝑍 / 𝑉))))
289286, 288breqtrd 5101 . . . . . 6 (𝜑 → (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉))))
29028relogcld 25787 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ)
29130relogcld 25787 . . . . . . 7 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℝ)
292 ledivmul 11860 . . . . . . 7 (((log‘𝑍) ∈ ℝ ∧ (log‘(𝑍 / 𝑉)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)) ↔ (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉)))))
293290, 291, 190, 192, 292syl112anc 1373 . . . . . 6 (𝜑 → (((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)) ↔ (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉)))))
294289, 293mpbird 256 . . . . 5 (𝜑 → ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)))
29520rprege0d 12788 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) ∈ ℝ ∧ 0 ≤ ((𝐿 · 𝐸) / 4)))
29638, 30rerpdivcld 12812 . . . . . 6 (𝜑 → ((♯‘𝐼) / (𝑍 / 𝑉)) ∈ ℝ)
29727simp2d 1142 . . . . . . . . . 10 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
298297simp1d 1141 . . . . . . . . 9 (𝜑 → 1 < 𝑍)
299108, 298rplogcld 25793 . . . . . . . 8 (𝜑 → (log‘𝑍) ∈ ℝ+)
300299rphalfcld 12793 . . . . . . 7 (𝜑 → ((log‘𝑍) / 2) ∈ ℝ+)
301300rprege0d 12788 . . . . . 6 (𝜑 → (((log‘𝑍) / 2) ∈ ℝ ∧ 0 ≤ ((log‘𝑍) / 2)))
302 lemul12a 11842 . . . . . 6 ((((((𝐿 · 𝐸) / 4) ∈ ℝ ∧ 0 ≤ ((𝐿 · 𝐸) / 4)) ∧ ((♯‘𝐼) / (𝑍 / 𝑉)) ∈ ℝ) ∧ ((((log‘𝑍) / 2) ∈ ℝ ∧ 0 ≤ ((log‘𝑍) / 2)) ∧ (log‘(𝑍 / 𝑉)) ∈ ℝ)) → ((((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)) ∧ ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉)))))
303295, 296, 301, 291, 302syl22anc 836 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)) ∧ ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉)))))
304256, 294, 303mp2and 696 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
305299rpcnd 12783 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
306 8nn 12077 . . . . . . . 8 8 ∈ ℕ
307 nnrp 12750 . . . . . . . 8 (8 ∈ ℕ → 8 ∈ ℝ+)
308306, 307ax-mp 5 . . . . . . 7 8 ∈ ℝ+
309 rpcnne0 12757 . . . . . . 7 (8 ∈ ℝ+ → (8 ∈ ℂ ∧ 8 ≠ 0))
310308, 309mp1i 13 . . . . . 6 (𝜑 → (8 ∈ ℂ ∧ 8 ≠ 0))
311 div23 11661 . . . . . 6 (((𝐿 · 𝐸) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ ∧ (8 ∈ ℂ ∧ 8 ≠ 0)) → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 8) · (log‘𝑍)))
312147, 305, 310, 311syl3anc 1370 . . . . 5 (𝜑 → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 8) · (log‘𝑍)))
313 divmuldiv 11684 . . . . . . 7 ((((𝐿 · 𝐸) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ) ∧ ((4 ∈ ℂ ∧ 4 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)))
314147, 305, 140, 150, 313syl22anc 836 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)))
315 4t2e8 12150 . . . . . . 7 (4 · 2) = 8
316315oveq2i 7295 . . . . . 6 (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / 8)
317314, 316eqtr2di 2796 . . . . 5 (𝜑 → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)))
318312, 317eqtr3d 2781 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) = (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)))
31938recnd 11012 . . . . 5 (𝜑 → (♯‘𝐼) ∈ ℂ)
320291recnd 11012 . . . . 5 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℂ)
32130rpcnne0d 12790 . . . . 5 (𝜑 → ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0))
322 divass 11660 . . . . . 6 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → (((♯‘𝐼) · (log‘(𝑍 / 𝑉))) / (𝑍 / 𝑉)) = ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))
323 div23 11661 . . . . . 6 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → (((♯‘𝐼) · (log‘(𝑍 / 𝑉))) / (𝑍 / 𝑉)) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
324322, 323eqtr3d 2781 . . . . 5 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
325319, 320, 321, 324syl3anc 1370 . . . 4 (𝜑 → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
326304, 318, 3253brtr4d 5107 . . 3 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ≤ ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))
327 rpdivcl 12764 . . . . . . 7 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
32815, 308, 327sylancl 586 . . . . . 6 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
329328, 299rpmulcld 12797 . . . . 5 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
330329rpred 12781 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ)
331291, 30rerpdivcld 12812 . . . . 5 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
33238, 331remulcld 11014 . . . 4 (𝜑 → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
333180simp3d 1143 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
334330, 332, 333lemul2d 12825 . . 3 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) ≤ ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ↔ ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))))
335326, 334mpbid 231 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
336333rpcnd 12783 . . 3 (𝜑 → (𝑈𝐸) ∈ ℂ)
337331recnd 11012 . . 3 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℂ)
338336, 319, 337mul12d 11193 . 2 (𝜑 → ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
339335, 338breqtrd 5101 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066   class class class wbr 5075  cmpt 5158  cfv 6437  (class class class)co 7284  Fincfn 8742  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  +∞cpnf 11015   < clt 11018  cle 11019  cmin 11214   / cdiv 11641  cn 11982  2c2 12037  3c3 12038  4c4 12039  8c8 12043  0cn0 12242  cz 12328  cdc 12446  cuz 12591  +crp 12739  (,)cioo 13088  [,)cico 13090  [,]cicc 13091  ...cfz 13248  ..^cfzo 13391  cfl 13519  cexp 13791  chash 14053  csqrt 14953  abscabs 14954  expce 15780  eceu 15781  logclog 25719  ψcchp 26251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-e 15787  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040  df-log 25721
This theorem is referenced by:  pntlemj  26760
  Copyright terms: Public domain W3C validator