![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmhmlmod2 | Structured version Visualization version GIF version |
Description: A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmhmlmod2 | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2795 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
2 | eqid 2795 | . . 3 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
3 | 1, 2 | lmhmlem 19491 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆)))) |
4 | 3 | simplrd 766 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ‘cfv 6225 (class class class)co 7016 Scalarcsca 16397 GrpHom cghm 18096 LModclmod 19324 LMHom clmhm 19481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-iota 6189 df-fun 6227 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-lmhm 19484 |
This theorem is referenced by: lmhmco 19505 lmhmplusg 19506 lmhmvsca 19507 lmhmf1o 19508 lmhmima 19509 lmhmpreima 19510 lmhmlsp 19511 lmhmkerlss 19513 reslmhm 19514 islmim 19524 lmicrcl 19533 lindfmm 20653 lindsmm 20654 lmhmclm 23374 lmhmlvec2 30621 dimkerim 30627 lmhmlvec 38675 lmhmfgima 39169 lnmepi 39170 lmhmfgsplit 39171 lmhmlnmsplit 39172 |
Copyright terms: Public domain | W3C validator |