MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlmod2 Structured version   Visualization version   GIF version

Theorem lmhmlmod2 21054
Description: A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmhmlmod2 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)

Proof of Theorem lmhmlmod2
StepHypRef Expression
1 eqid 2740 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
2 eqid 2740 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
31, 2lmhmlem 21051 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆))))
43simplrd 769 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Scalarcsca 17314   GrpHom cghm 19252  LModclmod 20880   LMHom clmhm 21041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-lmhm 21044
This theorem is referenced by:  lmhmco  21065  lmhmplusg  21066  lmhmvsca  21067  lmhmf1o  21068  lmhmima  21069  lmhmpreima  21070  lmhmlsp  21071  lmhmkerlss  21073  reslmhm  21074  islmim  21084  lmicrcl  21093  lmhmlvec  21132  lindfmm  21870  lindsmm  21871  lmhmclm  25139  lmhmqusker  33410  lmhmlvec2  33632  dimkerim  33640  lmhmfgima  43041  lnmepi  43042  lmhmfgsplit  43043  lmhmlnmsplit  43044
  Copyright terms: Public domain W3C validator