| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmhmlmod2 | Structured version Visualization version GIF version | ||
| Description: A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmhmlmod2 | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 2 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 3 | 1, 2 | lmhmlem 20933 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆)))) |
| 4 | 3 | simplrd 769 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Scalarcsca 17164 GrpHom cghm 19091 LModclmod 20763 LMHom clmhm 20923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-lmhm 20926 |
| This theorem is referenced by: lmhmco 20947 lmhmplusg 20948 lmhmvsca 20949 lmhmf1o 20950 lmhmima 20951 lmhmpreima 20952 lmhmlsp 20953 lmhmkerlss 20955 reslmhm 20956 islmim 20966 lmicrcl 20975 lmhmlvec 21014 lindfmm 21734 lindsmm 21735 lmhmclm 24985 lmhmqusker 33355 lmhmlvec2 33592 dimkerim 33600 lmhmfgima 43067 lnmepi 43068 lmhmfgsplit 43069 lmhmlnmsplit 43070 |
| Copyright terms: Public domain | W3C validator |