Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmhmlmod2 | Structured version Visualization version GIF version |
Description: A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmhmlmod2 | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
2 | eqid 2737 | . . 3 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
3 | 1, 2 | lmhmlem 20374 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆)))) |
4 | 3 | simplrd 767 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6466 (class class class)co 7317 Scalarcsca 17042 GrpHom cghm 18907 LModclmod 20206 LMHom clmhm 20364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-iota 6418 df-fun 6468 df-fv 6474 df-ov 7320 df-oprab 7321 df-mpo 7322 df-lmhm 20367 |
This theorem is referenced by: lmhmco 20388 lmhmplusg 20389 lmhmvsca 20390 lmhmf1o 20391 lmhmima 20392 lmhmpreima 20393 lmhmlsp 20394 lmhmkerlss 20396 reslmhm 20397 islmim 20407 lmicrcl 20416 lindfmm 21117 lindsmm 21118 lmhmclm 24333 lmhmlvec2 31842 dimkerim 31848 lmhmlvec 40477 lmhmfgima 41126 lnmepi 41127 lmhmfgsplit 41128 lmhmlnmsplit 41129 |
Copyright terms: Public domain | W3C validator |