MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlmod2 Structured version   Visualization version   GIF version

Theorem lmhmlmod2 21049
Description: A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmhmlmod2 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)

Proof of Theorem lmhmlmod2
StepHypRef Expression
1 eqid 2735 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
2 eqid 2735 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
31, 2lmhmlem 21046 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆))))
43simplrd 770 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Scalarcsca 17301   GrpHom cghm 19243  LModclmod 20875   LMHom clmhm 21036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-lmhm 21039
This theorem is referenced by:  lmhmco  21060  lmhmplusg  21061  lmhmvsca  21062  lmhmf1o  21063  lmhmima  21064  lmhmpreima  21065  lmhmlsp  21066  lmhmkerlss  21068  reslmhm  21069  islmim  21079  lmicrcl  21088  lmhmlvec  21127  lindfmm  21865  lindsmm  21866  lmhmclm  25134  lmhmqusker  33425  lmhmlvec2  33647  dimkerim  33655  lmhmfgima  43073  lnmepi  43074  lmhmfgsplit  43075  lmhmlnmsplit  43076
  Copyright terms: Public domain W3C validator