Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmhmlmod2 | Structured version Visualization version GIF version |
Description: A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmhmlmod2 | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
2 | eqid 2738 | . . 3 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
3 | 1, 2 | lmhmlem 20206 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆)))) |
4 | 3 | simplrd 766 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Scalarcsca 16891 GrpHom cghm 18746 LModclmod 20038 LMHom clmhm 20196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-lmhm 20199 |
This theorem is referenced by: lmhmco 20220 lmhmplusg 20221 lmhmvsca 20222 lmhmf1o 20223 lmhmima 20224 lmhmpreima 20225 lmhmlsp 20226 lmhmkerlss 20228 reslmhm 20229 islmim 20239 lmicrcl 20248 lindfmm 20944 lindsmm 20945 lmhmclm 24156 lmhmlvec2 31604 dimkerim 31610 lmhmlvec 40186 lmhmfgima 40825 lnmepi 40826 lmhmfgsplit 40827 lmhmlnmsplit 40828 |
Copyright terms: Public domain | W3C validator |