MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlmod2 Structured version   Visualization version   GIF version

Theorem lmhmlmod2 19238
Description: A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmhmlmod2 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)

Proof of Theorem lmhmlmod2
StepHypRef Expression
1 eqid 2771 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
2 eqid 2771 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
31, 2lmhmlem 19235 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆))))
4 simplr 752 . 2 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆))) → 𝑇 ∈ LMod)
53, 4syl 17 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6029  (class class class)co 6791  Scalarcsca 16145   GrpHom cghm 17858  LModclmod 19066   LMHom clmhm 19225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5992  df-fun 6031  df-fv 6037  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-lmhm 19228
This theorem is referenced by:  lmhmco  19249  lmhmplusg  19250  lmhmvsca  19251  lmhmf1o  19252  lmhmima  19253  lmhmpreima  19254  lmhmlsp  19255  lmhmkerlss  19257  reslmhm  19258  islmim  19268  lmicrcl  19277  lindfmm  20376  lindsmm  20377  lmhmclm  23099  lmhmfgima  38173  lnmepi  38174  lmhmfgsplit  38175  lmhmlnmsplit  38176
  Copyright terms: Public domain W3C validator