MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lejoin2 Structured version   Visualization version   GIF version

Theorem lejoin2 18348
Description: A join's second argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011.)
Hypotheses
Ref Expression
joinval2.b 𝐡 = (Baseβ€˜πΎ)
joinval2.l ≀ = (leβ€˜πΎ)
joinval2.j ∨ = (joinβ€˜πΎ)
joinval2.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
joinval2.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
joinval2.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
joinlem.e (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ )
Assertion
Ref Expression
lejoin2 (πœ‘ β†’ π‘Œ ≀ (𝑋 ∨ π‘Œ))

Proof of Theorem lejoin2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 joinval2.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 joinval2.l . . 3 ≀ = (leβ€˜πΎ)
3 joinval2.j . . 3 ∨ = (joinβ€˜πΎ)
4 joinval2.k . . 3 (πœ‘ β†’ 𝐾 ∈ 𝑉)
5 joinval2.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
6 joinval2.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
7 joinlem.e . . 3 (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ )
81, 2, 3, 4, 5, 6, 7joinlem 18346 . 2 (πœ‘ β†’ ((𝑋 ≀ (𝑋 ∨ π‘Œ) ∧ π‘Œ ≀ (𝑋 ∨ π‘Œ)) ∧ βˆ€π‘§ ∈ 𝐡 ((𝑋 ≀ 𝑧 ∧ π‘Œ ≀ 𝑧) β†’ (𝑋 ∨ π‘Œ) ≀ 𝑧)))
98simplrd 767 1 (πœ‘ β†’ π‘Œ ≀ (𝑋 ∨ π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βŸ¨cop 4634   class class class wbr 5148  dom cdm 5676  β€˜cfv 6543  (class class class)co 7412  Basecbs 17151  lecple 17211  joincjn 18274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-lub 18309  df-join 18311
This theorem is referenced by:  joinle  18349  latlej2  18412
  Copyright terms: Public domain W3C validator