Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lejoin2 | Structured version Visualization version GIF version |
Description: A join's second argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011.) |
Ref | Expression |
---|---|
joinval2.b | ⊢ 𝐵 = (Base‘𝐾) |
joinval2.l | ⊢ ≤ = (le‘𝐾) |
joinval2.j | ⊢ ∨ = (join‘𝐾) |
joinval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joinval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
joinval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
joinlem.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
Ref | Expression |
---|---|
lejoin2 | ⊢ (𝜑 → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | joinval2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | joinval2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | joinval2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
5 | joinval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | joinval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | joinlem.e | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | joinlem 17889 | . 2 ⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |
9 | 8 | simplrd 770 | 1 ⊢ (𝜑 → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 〈cop 4547 class class class wbr 5053 dom cdm 5551 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 lecple 16809 joincjn 17818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-lub 17852 df-join 17854 |
This theorem is referenced by: joinle 17892 latlej2 17955 |
Copyright terms: Public domain | W3C validator |