| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lejoin2 | Structured version Visualization version GIF version | ||
| Description: A join's second argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011.) |
| Ref | Expression |
|---|---|
| joinval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| joinval2.l | ⊢ ≤ = (le‘𝐾) |
| joinval2.j | ⊢ ∨ = (join‘𝐾) |
| joinval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| joinval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| joinval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| joinlem.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| Ref | Expression |
|---|---|
| lejoin2 | ⊢ (𝜑 → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | joinval2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | joinval2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | joinval2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 5 | joinval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | joinval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | joinlem.e | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | joinlem 18291 | . 2 ⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |
| 9 | 8 | simplrd 769 | 1 ⊢ (𝜑 → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 〈cop 4583 class class class wbr 5095 dom cdm 5621 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 lecple 17172 joincjn 18221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-lub 18254 df-join 18256 |
| This theorem is referenced by: joinle 18294 latlej2 18359 |
| Copyright terms: Public domain | W3C validator |