Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4c Structured version   Visualization version   GIF version

Theorem cdlemg4c 38312
Description: TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg4.j = (join‘𝐾)
cdlemg4b.v 𝑉 = (𝑅𝐺)
Assertion
Ref Expression
cdlemg4c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) ∧ ¬ 𝑄 (𝑃 𝑉)) → ¬ (𝐺𝑄) (𝑃 𝑉))

Proof of Theorem cdlemg4c
StepHypRef Expression
1 simpll 767 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simplr2 1218 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simplr3 1219 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝐺𝑇)
4 cdlemg4.l . . . . . . . . 9 = (le‘𝐾)
5 cdlemg4.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
6 cdlemg4.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
7 cdlemg4.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg4.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
9 cdlemg4.j . . . . . . . . 9 = (join‘𝐾)
10 cdlemg4b.v . . . . . . . . 9 𝑉 = (𝑅𝐺)
114, 5, 6, 7, 8, 9, 10cdlemg4b2 38310 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) → ((𝐺𝑄) 𝑉) = (𝑄 (𝐺𝑄)))
121, 2, 3, 11syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝐺𝑄) 𝑉) = (𝑄 (𝐺𝑄)))
13 simpr 488 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐺𝑄) (𝑃 𝑉))
14 simpll 767 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐾 ∈ HL)
1514hllatd 37064 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐾 ∈ Lat)
16 simpr1l 1232 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑃𝐴)
17 eqid 2736 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
1817, 5atbase 36989 . . . . . . . . . . 11 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1916, 18syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑃 ∈ (Base‘𝐾))
20 simpl 486 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simpr3 1198 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐺𝑇)
2217, 6, 7, 8trlcl 37864 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
2320, 21, 22syl2anc 587 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝑅𝐺) ∈ (Base‘𝐾))
2410, 23eqeltrid 2835 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑉 ∈ (Base‘𝐾))
2517, 4, 9latlej2 17909 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → 𝑉 (𝑃 𝑉))
2615, 19, 24, 25syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑉 (𝑃 𝑉))
2726adantr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑉 (𝑃 𝑉))
28 simpr2l 1234 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑄𝐴)
2917, 5atbase 36989 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑄 ∈ (Base‘𝐾))
3117, 6, 7ltrncl 37825 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
3220, 21, 30, 31syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝐺𝑄) ∈ (Base‘𝐾))
3317, 9latjcl 17899 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3415, 19, 24, 33syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3517, 4, 9latjle12 17910 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝐺𝑄) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3615, 32, 24, 34, 35syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3736adantr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3813, 27, 37mpbi2and 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝐺𝑄) 𝑉) (𝑃 𝑉))
3912, 38eqbrtrrd 5063 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄 (𝐺𝑄)) (𝑃 𝑉))
4015adantr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝐾 ∈ Lat)
4130adantr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑄 ∈ (Base‘𝐾))
4232adantr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐺𝑄) ∈ (Base‘𝐾))
4319adantr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑃 ∈ (Base‘𝐾))
441, 3, 22syl2anc 587 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑅𝐺) ∈ (Base‘𝐾))
4510, 44eqeltrid 2835 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑉 ∈ (Base‘𝐾))
4640, 43, 45, 33syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑃 𝑉) ∈ (Base‘𝐾))
4717, 4, 9latjle12 17910 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝐺𝑄) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)) ↔ (𝑄 (𝐺𝑄)) (𝑃 𝑉)))
4840, 41, 42, 46, 47syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)) ↔ (𝑄 (𝐺𝑄)) (𝑃 𝑉)))
4939, 48mpbird 260 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)))
5049simpld 498 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑄 (𝑃 𝑉))
5150ex 416 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → ((𝐺𝑄) (𝑃 𝑉) → 𝑄 (𝑃 𝑉)))
5251con3d 155 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (¬ 𝑄 (𝑃 𝑉) → ¬ (𝐺𝑄) (𝑃 𝑉)))
53523impia 1119 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) ∧ ¬ 𝑄 (𝑃 𝑉)) → ¬ (𝐺𝑄) (𝑃 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112   class class class wbr 5039  cfv 6358  (class class class)co 7191  Basecbs 16666  lecple 16756  joincjn 17772  Latclat 17891  Atomscatm 36963  HLchlt 37050  LHypclh 37684  LTrncltrn 37801  trLctrl 37858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-map 8488  df-proset 17756  df-poset 17774  df-plt 17790  df-lub 17806  df-glb 17807  df-join 17808  df-meet 17809  df-p0 17885  df-p1 17886  df-lat 17892  df-clat 17959  df-oposet 36876  df-ol 36878  df-oml 36879  df-covers 36966  df-ats 36967  df-atl 36998  df-cvlat 37022  df-hlat 37051  df-psubsp 37203  df-pmap 37204  df-padd 37496  df-lhyp 37688  df-laut 37689  df-ldil 37804  df-ltrn 37805  df-trl 37859
This theorem is referenced by:  cdlemg4d  38313
  Copyright terms: Public domain W3C validator