Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4c Structured version   Visualization version   GIF version

Theorem cdlemg4c 37901
Description: TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg4.j = (join‘𝐾)
cdlemg4b.v 𝑉 = (𝑅𝐺)
Assertion
Ref Expression
cdlemg4c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) ∧ ¬ 𝑄 (𝑃 𝑉)) → ¬ (𝐺𝑄) (𝑃 𝑉))

Proof of Theorem cdlemg4c
StepHypRef Expression
1 simpll 766 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simplr2 1213 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simplr3 1214 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝐺𝑇)
4 cdlemg4.l . . . . . . . . 9 = (le‘𝐾)
5 cdlemg4.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
6 cdlemg4.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
7 cdlemg4.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg4.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
9 cdlemg4.j . . . . . . . . 9 = (join‘𝐾)
10 cdlemg4b.v . . . . . . . . 9 𝑉 = (𝑅𝐺)
114, 5, 6, 7, 8, 9, 10cdlemg4b2 37899 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) → ((𝐺𝑄) 𝑉) = (𝑄 (𝐺𝑄)))
121, 2, 3, 11syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝐺𝑄) 𝑉) = (𝑄 (𝐺𝑄)))
13 simpr 488 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐺𝑄) (𝑃 𝑉))
14 simpll 766 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐾 ∈ HL)
1514hllatd 36653 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐾 ∈ Lat)
16 simpr1l 1227 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑃𝐴)
17 eqid 2801 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
1817, 5atbase 36578 . . . . . . . . . . 11 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1916, 18syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑃 ∈ (Base‘𝐾))
20 simpl 486 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simpr3 1193 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐺𝑇)
2217, 6, 7, 8trlcl 37453 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
2320, 21, 22syl2anc 587 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝑅𝐺) ∈ (Base‘𝐾))
2410, 23eqeltrid 2897 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑉 ∈ (Base‘𝐾))
2517, 4, 9latlej2 17666 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → 𝑉 (𝑃 𝑉))
2615, 19, 24, 25syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑉 (𝑃 𝑉))
2726adantr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑉 (𝑃 𝑉))
28 simpr2l 1229 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑄𝐴)
2917, 5atbase 36578 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑄 ∈ (Base‘𝐾))
3117, 6, 7ltrncl 37414 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
3220, 21, 30, 31syl3anc 1368 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝐺𝑄) ∈ (Base‘𝐾))
3317, 9latjcl 17656 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3415, 19, 24, 33syl3anc 1368 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3517, 4, 9latjle12 17667 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝐺𝑄) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3615, 32, 24, 34, 35syl13anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3736adantr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3813, 27, 37mpbi2and 711 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝐺𝑄) 𝑉) (𝑃 𝑉))
3912, 38eqbrtrrd 5057 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄 (𝐺𝑄)) (𝑃 𝑉))
4015adantr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝐾 ∈ Lat)
4130adantr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑄 ∈ (Base‘𝐾))
4232adantr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐺𝑄) ∈ (Base‘𝐾))
4319adantr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑃 ∈ (Base‘𝐾))
441, 3, 22syl2anc 587 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑅𝐺) ∈ (Base‘𝐾))
4510, 44eqeltrid 2897 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑉 ∈ (Base‘𝐾))
4640, 43, 45, 33syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑃 𝑉) ∈ (Base‘𝐾))
4717, 4, 9latjle12 17667 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝐺𝑄) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)) ↔ (𝑄 (𝐺𝑄)) (𝑃 𝑉)))
4840, 41, 42, 46, 47syl13anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)) ↔ (𝑄 (𝐺𝑄)) (𝑃 𝑉)))
4939, 48mpbird 260 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)))
5049simpld 498 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑄 (𝑃 𝑉))
5150ex 416 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → ((𝐺𝑄) (𝑃 𝑉) → 𝑄 (𝑃 𝑉)))
5251con3d 155 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (¬ 𝑄 (𝑃 𝑉) → ¬ (𝐺𝑄) (𝑃 𝑉)))
53523impia 1114 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) ∧ ¬ 𝑄 (𝑃 𝑉)) → ¬ (𝐺𝑄) (𝑃 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112   class class class wbr 5033  cfv 6328  (class class class)co 7139  Basecbs 16478  lecple 16567  joincjn 17549  Latclat 17650  Atomscatm 36552  HLchlt 36639  LHypclh 37273  LTrncltrn 37390  trLctrl 37447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-map 8395  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-psubsp 36792  df-pmap 36793  df-padd 37085  df-lhyp 37277  df-laut 37278  df-ldil 37393  df-ltrn 37394  df-trl 37448
This theorem is referenced by:  cdlemg4d  37902
  Copyright terms: Public domain W3C validator