Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4c Structured version   Visualization version   GIF version

Theorem cdlemg4c 39939
Description: TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg4.j = (join‘𝐾)
cdlemg4b.v 𝑉 = (𝑅𝐺)
Assertion
Ref Expression
cdlemg4c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) ∧ ¬ 𝑄 (𝑃 𝑉)) → ¬ (𝐺𝑄) (𝑃 𝑉))

Proof of Theorem cdlemg4c
StepHypRef Expression
1 simpll 764 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simplr2 1213 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simplr3 1214 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝐺𝑇)
4 cdlemg4.l . . . . . . . . 9 = (le‘𝐾)
5 cdlemg4.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
6 cdlemg4.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
7 cdlemg4.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg4.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
9 cdlemg4.j . . . . . . . . 9 = (join‘𝐾)
10 cdlemg4b.v . . . . . . . . 9 𝑉 = (𝑅𝐺)
114, 5, 6, 7, 8, 9, 10cdlemg4b2 39937 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) → ((𝐺𝑄) 𝑉) = (𝑄 (𝐺𝑄)))
121, 2, 3, 11syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝐺𝑄) 𝑉) = (𝑄 (𝐺𝑄)))
13 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐺𝑄) (𝑃 𝑉))
14 simpll 764 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐾 ∈ HL)
1514hllatd 38690 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐾 ∈ Lat)
16 simpr1l 1227 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑃𝐴)
17 eqid 2724 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
1817, 5atbase 38615 . . . . . . . . . . 11 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1916, 18syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑃 ∈ (Base‘𝐾))
20 simpl 482 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simpr3 1193 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐺𝑇)
2217, 6, 7, 8trlcl 39491 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
2320, 21, 22syl2anc 583 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝑅𝐺) ∈ (Base‘𝐾))
2410, 23eqeltrid 2829 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑉 ∈ (Base‘𝐾))
2517, 4, 9latlej2 18401 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → 𝑉 (𝑃 𝑉))
2615, 19, 24, 25syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑉 (𝑃 𝑉))
2726adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑉 (𝑃 𝑉))
28 simpr2l 1229 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑄𝐴)
2917, 5atbase 38615 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑄 ∈ (Base‘𝐾))
3117, 6, 7ltrncl 39452 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
3220, 21, 30, 31syl3anc 1368 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝐺𝑄) ∈ (Base‘𝐾))
3317, 9latjcl 18391 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3415, 19, 24, 33syl3anc 1368 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3517, 4, 9latjle12 18402 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝐺𝑄) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3615, 32, 24, 34, 35syl13anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3736adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3813, 27, 37mpbi2and 709 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝐺𝑄) 𝑉) (𝑃 𝑉))
3912, 38eqbrtrrd 5162 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄 (𝐺𝑄)) (𝑃 𝑉))
4015adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝐾 ∈ Lat)
4130adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑄 ∈ (Base‘𝐾))
4232adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐺𝑄) ∈ (Base‘𝐾))
4319adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑃 ∈ (Base‘𝐾))
441, 3, 22syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑅𝐺) ∈ (Base‘𝐾))
4510, 44eqeltrid 2829 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑉 ∈ (Base‘𝐾))
4640, 43, 45, 33syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑃 𝑉) ∈ (Base‘𝐾))
4717, 4, 9latjle12 18402 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝐺𝑄) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)) ↔ (𝑄 (𝐺𝑄)) (𝑃 𝑉)))
4840, 41, 42, 46, 47syl13anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)) ↔ (𝑄 (𝐺𝑄)) (𝑃 𝑉)))
4939, 48mpbird 257 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)))
5049simpld 494 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑄 (𝑃 𝑉))
5150ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → ((𝐺𝑄) (𝑃 𝑉) → 𝑄 (𝑃 𝑉)))
5251con3d 152 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (¬ 𝑄 (𝑃 𝑉) → ¬ (𝐺𝑄) (𝑃 𝑉)))
53523impia 1114 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) ∧ ¬ 𝑄 (𝑃 𝑉)) → ¬ (𝐺𝑄) (𝑃 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5138  cfv 6533  (class class class)co 7401  Basecbs 17140  lecple 17200  joincjn 18263  Latclat 18383  Atomscatm 38589  HLchlt 38676  LHypclh 39311  LTrncltrn 39428  trLctrl 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-map 8817  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677  df-psubsp 38830  df-pmap 38831  df-padd 39123  df-lhyp 39315  df-laut 39316  df-ldil 39431  df-ltrn 39432  df-trl 39486
This theorem is referenced by:  cdlemg4d  39940
  Copyright terms: Public domain W3C validator