Proof of Theorem cdlemg4c
Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simplr2 1214 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
3 | | simplr3 1215 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝐺 ∈ 𝑇) |
4 | | cdlemg4.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
5 | | cdlemg4.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | cdlemg4.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | cdlemg4.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
8 | | cdlemg4.r |
. . . . . . . . 9
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
9 | | cdlemg4.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
10 | | cdlemg4b.v |
. . . . . . . . 9
⊢ 𝑉 = (𝑅‘𝐺) |
11 | 4, 5, 6, 7, 8, 9, 10 | cdlemg4b2 38551 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) → ((𝐺‘𝑄) ∨ 𝑉) = (𝑄 ∨ (𝐺‘𝑄))) |
12 | 1, 2, 3, 11 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → ((𝐺‘𝑄) ∨ 𝑉) = (𝑄 ∨ (𝐺‘𝑄))) |
13 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) |
14 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝐾 ∈ HL) |
15 | 14 | hllatd 37305 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝐾 ∈ Lat) |
16 | | simpr1l 1228 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑃 ∈ 𝐴) |
17 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝐾) |
18 | 17, 5 | atbase 37230 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
19 | 16, 18 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑃 ∈ (Base‘𝐾)) |
20 | | simpl 482 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
21 | | simpr3 1194 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) |
22 | 17, 6, 7, 8 | trlcl 38105 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
23 | 20, 21, 22 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
24 | 10, 23 | eqeltrid 2843 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑉 ∈ (Base‘𝐾)) |
25 | 17, 4, 9 | latlej2 18082 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → 𝑉 ≤ (𝑃 ∨ 𝑉)) |
26 | 15, 19, 24, 25 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑉 ≤ (𝑃 ∨ 𝑉)) |
27 | 26 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝑉 ≤ (𝑃 ∨ 𝑉)) |
28 | | simpr2l 1230 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑄 ∈ 𝐴) |
29 | 17, 5 | atbase 37230 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑄 ∈ (Base‘𝐾)) |
31 | 17, 6, 7 | ltrncl 38066 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ∈ (Base‘𝐾)) → (𝐺‘𝑄) ∈ (Base‘𝐾)) |
32 | 20, 21, 30, 31 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (𝐺‘𝑄) ∈ (Base‘𝐾)) |
33 | 17, 9 | latjcl 18072 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) |
34 | 15, 19, 24, 33 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) |
35 | 17, 4, 9 | latjle12 18083 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ ((𝐺‘𝑄) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑉) ∈ (Base‘𝐾))) → (((𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉) ∧ 𝑉 ≤ (𝑃 ∨ 𝑉)) ↔ ((𝐺‘𝑄) ∨ 𝑉) ≤ (𝑃 ∨ 𝑉))) |
36 | 15, 32, 24, 34, 35 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (((𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉) ∧ 𝑉 ≤ (𝑃 ∨ 𝑉)) ↔ ((𝐺‘𝑄) ∨ 𝑉) ≤ (𝑃 ∨ 𝑉))) |
37 | 36 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (((𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉) ∧ 𝑉 ≤ (𝑃 ∨ 𝑉)) ↔ ((𝐺‘𝑄) ∨ 𝑉) ≤ (𝑃 ∨ 𝑉))) |
38 | 13, 27, 37 | mpbi2and 708 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → ((𝐺‘𝑄) ∨ 𝑉) ≤ (𝑃 ∨ 𝑉)) |
39 | 12, 38 | eqbrtrrd 5094 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝑄 ∨ (𝐺‘𝑄)) ≤ (𝑃 ∨ 𝑉)) |
40 | 15 | adantr 480 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝐾 ∈ Lat) |
41 | 30 | adantr 480 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝑄 ∈ (Base‘𝐾)) |
42 | 32 | adantr 480 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝐺‘𝑄) ∈ (Base‘𝐾)) |
43 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝑃 ∈ (Base‘𝐾)) |
44 | 1, 3, 22 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
45 | 10, 44 | eqeltrid 2843 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝑉 ∈ (Base‘𝐾)) |
46 | 40, 43, 45, 33 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) |
47 | 17, 4, 9 | latjle12 18083 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝐺‘𝑄) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑉) ∈ (Base‘𝐾))) → ((𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) ↔ (𝑄 ∨ (𝐺‘𝑄)) ≤ (𝑃 ∨ 𝑉))) |
48 | 40, 41, 42, 46, 47 | syl13anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → ((𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) ↔ (𝑄 ∨ (𝐺‘𝑄)) ≤ (𝑃 ∨ 𝑉))) |
49 | 39, 48 | mpbird 256 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉))) |
50 | 49 | simpld 494 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝑄 ≤ (𝑃 ∨ 𝑉)) |
51 | 50 | ex 412 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → ((𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉) → 𝑄 ≤ (𝑃 ∨ 𝑉))) |
52 | 51 | con3d 152 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (¬ 𝑄 ≤ (𝑃 ∨ 𝑉) → ¬ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉))) |
53 | 52 | 3impia 1115 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉)) → ¬ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) |