Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4c Structured version   Visualization version   GIF version

Theorem cdlemg4c 40784
Description: TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg4.j = (join‘𝐾)
cdlemg4b.v 𝑉 = (𝑅𝐺)
Assertion
Ref Expression
cdlemg4c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) ∧ ¬ 𝑄 (𝑃 𝑉)) → ¬ (𝐺𝑄) (𝑃 𝑉))

Proof of Theorem cdlemg4c
StepHypRef Expression
1 simpll 766 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simplr2 1217 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simplr3 1218 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝐺𝑇)
4 cdlemg4.l . . . . . . . . 9 = (le‘𝐾)
5 cdlemg4.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
6 cdlemg4.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
7 cdlemg4.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg4.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
9 cdlemg4.j . . . . . . . . 9 = (join‘𝐾)
10 cdlemg4b.v . . . . . . . . 9 𝑉 = (𝑅𝐺)
114, 5, 6, 7, 8, 9, 10cdlemg4b2 40782 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) → ((𝐺𝑄) 𝑉) = (𝑄 (𝐺𝑄)))
121, 2, 3, 11syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝐺𝑄) 𝑉) = (𝑄 (𝐺𝑄)))
13 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐺𝑄) (𝑃 𝑉))
14 simpll 766 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐾 ∈ HL)
1514hllatd 39536 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐾 ∈ Lat)
16 simpr1l 1231 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑃𝐴)
17 eqid 2733 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
1817, 5atbase 39461 . . . . . . . . . . 11 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1916, 18syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑃 ∈ (Base‘𝐾))
20 simpl 482 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simpr3 1197 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐺𝑇)
2217, 6, 7, 8trlcl 40336 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
2320, 21, 22syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝑅𝐺) ∈ (Base‘𝐾))
2410, 23eqeltrid 2837 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑉 ∈ (Base‘𝐾))
2517, 4, 9latlej2 18363 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → 𝑉 (𝑃 𝑉))
2615, 19, 24, 25syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑉 (𝑃 𝑉))
2726adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑉 (𝑃 𝑉))
28 simpr2l 1233 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑄𝐴)
2917, 5atbase 39461 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑄 ∈ (Base‘𝐾))
3117, 6, 7ltrncl 40297 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
3220, 21, 30, 31syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝐺𝑄) ∈ (Base‘𝐾))
3317, 9latjcl 18353 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3415, 19, 24, 33syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3517, 4, 9latjle12 18364 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝐺𝑄) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3615, 32, 24, 34, 35syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3736adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3813, 27, 37mpbi2and 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝐺𝑄) 𝑉) (𝑃 𝑉))
3912, 38eqbrtrrd 5119 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄 (𝐺𝑄)) (𝑃 𝑉))
4015adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝐾 ∈ Lat)
4130adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑄 ∈ (Base‘𝐾))
4232adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐺𝑄) ∈ (Base‘𝐾))
4319adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑃 ∈ (Base‘𝐾))
441, 3, 22syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑅𝐺) ∈ (Base‘𝐾))
4510, 44eqeltrid 2837 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑉 ∈ (Base‘𝐾))
4640, 43, 45, 33syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑃 𝑉) ∈ (Base‘𝐾))
4717, 4, 9latjle12 18364 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝐺𝑄) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)) ↔ (𝑄 (𝐺𝑄)) (𝑃 𝑉)))
4840, 41, 42, 46, 47syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)) ↔ (𝑄 (𝐺𝑄)) (𝑃 𝑉)))
4939, 48mpbird 257 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)))
5049simpld 494 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑄 (𝑃 𝑉))
5150ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → ((𝐺𝑄) (𝑃 𝑉) → 𝑄 (𝑃 𝑉)))
5251con3d 152 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (¬ 𝑄 (𝑃 𝑉) → ¬ (𝐺𝑄) (𝑃 𝑉)))
53523impia 1117 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) ∧ ¬ 𝑄 (𝑃 𝑉)) → ¬ (𝐺𝑄) (𝑃 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  joincjn 18225  Latclat 18345  Atomscatm 39435  HLchlt 39522  LHypclh 40156  LTrncltrn 40273  trLctrl 40330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-psubsp 39675  df-pmap 39676  df-padd 39968  df-lhyp 40160  df-laut 40161  df-ldil 40276  df-ltrn 40277  df-trl 40331
This theorem is referenced by:  cdlemg4d  40785
  Copyright terms: Public domain W3C validator