Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4c Structured version   Visualization version   GIF version

Theorem cdlemg4c 39075
Description: TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg4.j = (join‘𝐾)
cdlemg4b.v 𝑉 = (𝑅𝐺)
Assertion
Ref Expression
cdlemg4c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) ∧ ¬ 𝑄 (𝑃 𝑉)) → ¬ (𝐺𝑄) (𝑃 𝑉))

Proof of Theorem cdlemg4c
StepHypRef Expression
1 simpll 765 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simplr2 1216 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simplr3 1217 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝐺𝑇)
4 cdlemg4.l . . . . . . . . 9 = (le‘𝐾)
5 cdlemg4.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
6 cdlemg4.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
7 cdlemg4.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg4.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
9 cdlemg4.j . . . . . . . . 9 = (join‘𝐾)
10 cdlemg4b.v . . . . . . . . 9 𝑉 = (𝑅𝐺)
114, 5, 6, 7, 8, 9, 10cdlemg4b2 39073 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) → ((𝐺𝑄) 𝑉) = (𝑄 (𝐺𝑄)))
121, 2, 3, 11syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝐺𝑄) 𝑉) = (𝑄 (𝐺𝑄)))
13 simpr 485 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐺𝑄) (𝑃 𝑉))
14 simpll 765 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐾 ∈ HL)
1514hllatd 37826 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐾 ∈ Lat)
16 simpr1l 1230 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑃𝐴)
17 eqid 2736 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
1817, 5atbase 37751 . . . . . . . . . . 11 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1916, 18syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑃 ∈ (Base‘𝐾))
20 simpl 483 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simpr3 1196 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝐺𝑇)
2217, 6, 7, 8trlcl 38627 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
2320, 21, 22syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝑅𝐺) ∈ (Base‘𝐾))
2410, 23eqeltrid 2842 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑉 ∈ (Base‘𝐾))
2517, 4, 9latlej2 18338 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → 𝑉 (𝑃 𝑉))
2615, 19, 24, 25syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑉 (𝑃 𝑉))
2726adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑉 (𝑃 𝑉))
28 simpr2l 1232 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑄𝐴)
2917, 5atbase 37751 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → 𝑄 ∈ (Base‘𝐾))
3117, 6, 7ltrncl 38588 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
3220, 21, 30, 31syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝐺𝑄) ∈ (Base‘𝐾))
3317, 9latjcl 18328 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3415, 19, 24, 33syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3517, 4, 9latjle12 18339 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝐺𝑄) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3615, 32, 24, 34, 35syl13anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3736adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (((𝐺𝑄) (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ ((𝐺𝑄) 𝑉) (𝑃 𝑉)))
3813, 27, 37mpbi2and 710 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝐺𝑄) 𝑉) (𝑃 𝑉))
3912, 38eqbrtrrd 5129 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄 (𝐺𝑄)) (𝑃 𝑉))
4015adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝐾 ∈ Lat)
4130adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑄 ∈ (Base‘𝐾))
4232adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝐺𝑄) ∈ (Base‘𝐾))
4319adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑃 ∈ (Base‘𝐾))
441, 3, 22syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑅𝐺) ∈ (Base‘𝐾))
4510, 44eqeltrid 2842 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑉 ∈ (Base‘𝐾))
4640, 43, 45, 33syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑃 𝑉) ∈ (Base‘𝐾))
4717, 4, 9latjle12 18339 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝐺𝑄) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)) ↔ (𝑄 (𝐺𝑄)) (𝑃 𝑉)))
4840, 41, 42, 46, 47syl13anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → ((𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)) ↔ (𝑄 (𝐺𝑄)) (𝑃 𝑉)))
4939, 48mpbird 256 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → (𝑄 (𝑃 𝑉) ∧ (𝐺𝑄) (𝑃 𝑉)))
5049simpld 495 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) ∧ (𝐺𝑄) (𝑃 𝑉)) → 𝑄 (𝑃 𝑉))
5150ex 413 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → ((𝐺𝑄) (𝑃 𝑉) → 𝑄 (𝑃 𝑉)))
5251con3d 152 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇)) → (¬ 𝑄 (𝑃 𝑉) → ¬ (𝐺𝑄) (𝑃 𝑉)))
53523impia 1117 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐺𝑇) ∧ ¬ 𝑄 (𝑃 𝑉)) → ¬ (𝐺𝑄) (𝑃 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  Latclat 18320  Atomscatm 37725  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  trLctrl 38621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622
This theorem is referenced by:  cdlemg4d  39076
  Copyright terms: Public domain W3C validator