Proof of Theorem cdlemg4c
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpll 766 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simplr2 1216 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 3 |  | simplr3 1217 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝐺 ∈ 𝑇) | 
| 4 |  | cdlemg4.l | . . . . . . . . 9
⊢  ≤ =
(le‘𝐾) | 
| 5 |  | cdlemg4.a | . . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 |  | cdlemg4.h | . . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) | 
| 7 |  | cdlemg4.t | . . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 8 |  | cdlemg4.r | . . . . . . . . 9
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 9 |  | cdlemg4.j | . . . . . . . . 9
⊢  ∨ =
(join‘𝐾) | 
| 10 |  | cdlemg4b.v | . . . . . . . . 9
⊢ 𝑉 = (𝑅‘𝐺) | 
| 11 | 4, 5, 6, 7, 8, 9, 10 | cdlemg4b2 40613 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) → ((𝐺‘𝑄) ∨ 𝑉) = (𝑄 ∨ (𝐺‘𝑄))) | 
| 12 | 1, 2, 3, 11 | syl3anc 1372 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → ((𝐺‘𝑄) ∨ 𝑉) = (𝑄 ∨ (𝐺‘𝑄))) | 
| 13 |  | simpr 484 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) | 
| 14 |  | simpll 766 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝐾 ∈ HL) | 
| 15 | 14 | hllatd 39366 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝐾 ∈ Lat) | 
| 16 |  | simpr1l 1230 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑃 ∈ 𝐴) | 
| 17 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 18 | 17, 5 | atbase 39291 | . . . . . . . . . . 11
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 19 | 16, 18 | syl 17 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑃 ∈ (Base‘𝐾)) | 
| 20 |  | simpl 482 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 21 |  | simpr3 1196 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) | 
| 22 | 17, 6, 7, 8 | trlcl 40167 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) | 
| 23 | 20, 21, 22 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (𝑅‘𝐺) ∈ (Base‘𝐾)) | 
| 24 | 10, 23 | eqeltrid 2844 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑉 ∈ (Base‘𝐾)) | 
| 25 | 17, 4, 9 | latlej2 18495 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → 𝑉 ≤ (𝑃 ∨ 𝑉)) | 
| 26 | 15, 19, 24, 25 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑉 ≤ (𝑃 ∨ 𝑉)) | 
| 27 | 26 | adantr 480 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝑉 ≤ (𝑃 ∨ 𝑉)) | 
| 28 |  | simpr2l 1232 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑄 ∈ 𝐴) | 
| 29 | 17, 5 | atbase 39291 | . . . . . . . . . . . 12
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) | 
| 30 | 28, 29 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → 𝑄 ∈ (Base‘𝐾)) | 
| 31 | 17, 6, 7 | ltrncl 40128 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ∈ (Base‘𝐾)) → (𝐺‘𝑄) ∈ (Base‘𝐾)) | 
| 32 | 20, 21, 30, 31 | syl3anc 1372 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (𝐺‘𝑄) ∈ (Base‘𝐾)) | 
| 33 | 17, 9 | latjcl 18485 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) | 
| 34 | 15, 19, 24, 33 | syl3anc 1372 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) | 
| 35 | 17, 4, 9 | latjle12 18496 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ ((𝐺‘𝑄) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑉) ∈ (Base‘𝐾))) → (((𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉) ∧ 𝑉 ≤ (𝑃 ∨ 𝑉)) ↔ ((𝐺‘𝑄) ∨ 𝑉) ≤ (𝑃 ∨ 𝑉))) | 
| 36 | 15, 32, 24, 34, 35 | syl13anc 1373 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (((𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉) ∧ 𝑉 ≤ (𝑃 ∨ 𝑉)) ↔ ((𝐺‘𝑄) ∨ 𝑉) ≤ (𝑃 ∨ 𝑉))) | 
| 37 | 36 | adantr 480 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (((𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉) ∧ 𝑉 ≤ (𝑃 ∨ 𝑉)) ↔ ((𝐺‘𝑄) ∨ 𝑉) ≤ (𝑃 ∨ 𝑉))) | 
| 38 | 13, 27, 37 | mpbi2and 712 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → ((𝐺‘𝑄) ∨ 𝑉) ≤ (𝑃 ∨ 𝑉)) | 
| 39 | 12, 38 | eqbrtrrd 5166 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝑄 ∨ (𝐺‘𝑄)) ≤ (𝑃 ∨ 𝑉)) | 
| 40 | 15 | adantr 480 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝐾 ∈ Lat) | 
| 41 | 30 | adantr 480 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝑄 ∈ (Base‘𝐾)) | 
| 42 | 32 | adantr 480 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝐺‘𝑄) ∈ (Base‘𝐾)) | 
| 43 | 19 | adantr 480 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝑃 ∈ (Base‘𝐾)) | 
| 44 | 1, 3, 22 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝑅‘𝐺) ∈ (Base‘𝐾)) | 
| 45 | 10, 44 | eqeltrid 2844 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝑉 ∈ (Base‘𝐾)) | 
| 46 | 40, 43, 45, 33 | syl3anc 1372 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) | 
| 47 | 17, 4, 9 | latjle12 18496 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝐺‘𝑄) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑉) ∈ (Base‘𝐾))) → ((𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) ↔ (𝑄 ∨ (𝐺‘𝑄)) ≤ (𝑃 ∨ 𝑉))) | 
| 48 | 40, 41, 42, 46, 47 | syl13anc 1373 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → ((𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) ↔ (𝑄 ∨ (𝐺‘𝑄)) ≤ (𝑃 ∨ 𝑉))) | 
| 49 | 39, 48 | mpbird 257 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → (𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉))) | 
| 50 | 49 | simpld 494 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) ∧ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) → 𝑄 ≤ (𝑃 ∨ 𝑉)) | 
| 51 | 50 | ex 412 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → ((𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉) → 𝑄 ≤ (𝑃 ∨ 𝑉))) | 
| 52 | 51 | con3d 152 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇)) → (¬ 𝑄 ≤ (𝑃 ∨ 𝑉) → ¬ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉))) | 
| 53 | 52 | 3impia 1117 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉)) → ¬ (𝐺‘𝑄) ≤ (𝑃 ∨ 𝑉)) |