MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinom Structured version   Visualization version   GIF version

Theorem srgbinom 20147
Description: The binomial theorem for commuting elements of a semiring: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)) (generalization of binom 15803). (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
Assertion
Ref Expression
srgbinom (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   ,𝑘   × ,𝑘   + ,𝑘
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem srgbinom
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7397 . . . . . . 7 (𝑥 = 0 → (𝑥 (𝐴 + 𝐵)) = (0 (𝐴 + 𝐵)))
2 oveq2 7398 . . . . . . . . 9 (𝑥 = 0 → (0...𝑥) = (0...0))
3 oveq1 7397 . . . . . . . . . 10 (𝑥 = 0 → (𝑥C𝑘) = (0C𝑘))
4 oveq1 7397 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑘) = (0 − 𝑘))
54oveq1d 7405 . . . . . . . . . . 11 (𝑥 = 0 → ((𝑥𝑘) 𝐴) = ((0 − 𝑘) 𝐴))
65oveq1d 7405 . . . . . . . . . 10 (𝑥 = 0 → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))
73, 6oveq12d 7408 . . . . . . . . 9 (𝑥 = 0 → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))
82, 7mpteq12dv 5197 . . . . . . . 8 (𝑥 = 0 → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))))
98oveq2d 7406 . . . . . . 7 (𝑥 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))
101, 9eqeq12d 2746 . . . . . 6 (𝑥 = 0 → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ (0 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))))))
1110imbi2d 340 . . . . 5 (𝑥 = 0 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))))
12 oveq1 7397 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 (𝐴 + 𝐵)) = (𝑛 (𝐴 + 𝐵)))
13 oveq2 7398 . . . . . . . . 9 (𝑥 = 𝑛 → (0...𝑥) = (0...𝑛))
14 oveq1 7397 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝑥C𝑘) = (𝑛C𝑘))
15 oveq1 7397 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (𝑥𝑘) = (𝑛𝑘))
1615oveq1d 7405 . . . . . . . . . . 11 (𝑥 = 𝑛 → ((𝑥𝑘) 𝐴) = ((𝑛𝑘) 𝐴))
1716oveq1d 7405 . . . . . . . . . 10 (𝑥 = 𝑛 → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))
1814, 17oveq12d 7408 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))
1913, 18mpteq12dv 5197 . . . . . . . 8 (𝑥 = 𝑛 → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))
2019oveq2d 7406 . . . . . . 7 (𝑥 = 𝑛 → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))))
2112, 20eqeq12d 2746 . . . . . 6 (𝑥 = 𝑛 → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))))
2221imbi2d 340 . . . . 5 (𝑥 = 𝑛 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))))))
23 oveq1 7397 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝑥 (𝐴 + 𝐵)) = ((𝑛 + 1) (𝐴 + 𝐵)))
24 oveq2 7398 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (0...𝑥) = (0...(𝑛 + 1)))
25 oveq1 7397 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (𝑥C𝑘) = ((𝑛 + 1)C𝑘))
26 oveq1 7397 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝑥𝑘) = ((𝑛 + 1) − 𝑘))
2726oveq1d 7405 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → ((𝑥𝑘) 𝐴) = (((𝑛 + 1) − 𝑘) 𝐴))
2827oveq1d 7405 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))
2925, 28oveq12d 7408 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
3024, 29mpteq12dv 5197 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
3130oveq2d 7406 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
3223, 31eqeq12d 2746 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
3332imbi2d 340 . . . . 5 (𝑥 = (𝑛 + 1) → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))))
34 oveq1 7397 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 (𝐴 + 𝐵)) = (𝑁 (𝐴 + 𝐵)))
35 oveq2 7398 . . . . . . . . 9 (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁))
36 oveq1 7397 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝑥C𝑘) = (𝑁C𝑘))
37 oveq1 7397 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑥𝑘) = (𝑁𝑘))
3837oveq1d 7405 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝑥𝑘) 𝐴) = ((𝑁𝑘) 𝐴))
3938oveq1d 7405 . . . . . . . . . 10 (𝑥 = 𝑁 → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))
4036, 39oveq12d 7408 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))
4135, 40mpteq12dv 5197 . . . . . . . 8 (𝑥 = 𝑁 → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))
4241oveq2d 7406 . . . . . . 7 (𝑥 = 𝑁 → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
4334, 42eqeq12d 2746 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))))
4443imbi2d 340 . . . . 5 (𝑥 = 𝑁 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))))
45 simpr1 1195 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐴𝑆)
46 srgbinom.g . . . . . . . . . . . 12 𝐺 = (mulGrp‘𝑅)
47 srgbinom.s . . . . . . . . . . . 12 𝑆 = (Base‘𝑅)
4846, 47mgpbas 20061 . . . . . . . . . . 11 𝑆 = (Base‘𝐺)
4945, 48eleqtrdi 2839 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐴 ∈ (Base‘𝐺))
50 eqid 2730 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
51 eqid 2730 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
52 srgbinom.e . . . . . . . . . . 11 = (.g𝐺)
5350, 51, 52mulg0 19013 . . . . . . . . . 10 (𝐴 ∈ (Base‘𝐺) → (0 𝐴) = (0g𝐺))
5449, 53syl 17 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 𝐴) = (0g𝐺))
55 simpr2 1196 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐵𝑆)
5655, 48eleqtrdi 2839 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐵 ∈ (Base‘𝐺))
5750, 51, 52mulg0 19013 . . . . . . . . . 10 (𝐵 ∈ (Base‘𝐺) → (0 𝐵) = (0g𝐺))
5856, 57syl 17 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 𝐵) = (0g𝐺))
5954, 58oveq12d 7408 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((0 𝐴) × (0 𝐵)) = ((0g𝐺) × (0g𝐺)))
6059oveq2d 7406 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0 𝐴) × (0 𝐵))) = (1 · ((0g𝐺) × (0g𝐺))))
61 eqid 2730 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
6247, 61srgidcl 20115 . . . . . . . . . . . . 13 (𝑅 ∈ SRing → (1r𝑅) ∈ 𝑆)
6362ancli 548 . . . . . . . . . . . 12 (𝑅 ∈ SRing → (𝑅 ∈ SRing ∧ (1r𝑅) ∈ 𝑆))
6463adantr 480 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 ∈ SRing ∧ (1r𝑅) ∈ 𝑆))
65 srgbinom.m . . . . . . . . . . . 12 × = (.r𝑅)
6647, 65, 61srglidm 20118 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (1r𝑅) ∈ 𝑆) → ((1r𝑅) × (1r𝑅)) = (1r𝑅))
6764, 66syl 17 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((1r𝑅) × (1r𝑅)) = (1r𝑅))
6867oveq2d 7406 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((1r𝑅) × (1r𝑅))) = (1 · (1r𝑅)))
69 eqid 2730 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
7069, 61srgidcl 20115 . . . . . . . . . . 11 (𝑅 ∈ SRing → (1r𝑅) ∈ (Base‘𝑅))
71 srgbinom.t . . . . . . . . . . . 12 · = (.g𝑅)
7269, 71mulg1 19020 . . . . . . . . . . 11 ((1r𝑅) ∈ (Base‘𝑅) → (1 · (1r𝑅)) = (1r𝑅))
7370, 72syl 17 . . . . . . . . . 10 (𝑅 ∈ SRing → (1 · (1r𝑅)) = (1r𝑅))
7473adantr 480 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · (1r𝑅)) = (1r𝑅))
7568, 74eqtrd 2765 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((1r𝑅) × (1r𝑅))) = (1r𝑅))
7646, 61ringidval 20099 . . . . . . . . 9 (1r𝑅) = (0g𝐺)
77 id 22 . . . . . . . . . . . 12 ((1r𝑅) = (0g𝐺) → (1r𝑅) = (0g𝐺))
7877, 77oveq12d 7408 . . . . . . . . . . 11 ((1r𝑅) = (0g𝐺) → ((1r𝑅) × (1r𝑅)) = ((0g𝐺) × (0g𝐺)))
7978oveq2d 7406 . . . . . . . . . 10 ((1r𝑅) = (0g𝐺) → (1 · ((1r𝑅) × (1r𝑅))) = (1 · ((0g𝐺) × (0g𝐺))))
8079, 77eqeq12d 2746 . . . . . . . . 9 ((1r𝑅) = (0g𝐺) → ((1 · ((1r𝑅) × (1r𝑅))) = (1r𝑅) ↔ (1 · ((0g𝐺) × (0g𝐺))) = (0g𝐺)))
8176, 80ax-mp 5 . . . . . . . 8 ((1 · ((1r𝑅) × (1r𝑅))) = (1r𝑅) ↔ (1 · ((0g𝐺) × (0g𝐺))) = (0g𝐺))
8275, 81sylib 218 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0g𝐺) × (0g𝐺))) = (0g𝐺))
8360, 82eqtrd 2765 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0 𝐴) × (0 𝐵))) = (0g𝐺))
84 fz0sn 13595 . . . . . . . . . 10 (0...0) = {0}
8584a1i 11 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0...0) = {0})
8685mpteq1d 5200 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))))
8786oveq2d 7406 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))
88 srgmnd 20106 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
8988adantr 480 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝑅 ∈ Mnd)
90 c0ex 11175 . . . . . . . . 9 0 ∈ V
9190a1i 11 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 0 ∈ V)
9276, 62eqeltrrid 2834 . . . . . . . . . 10 (𝑅 ∈ SRing → (0g𝐺) ∈ 𝑆)
9392adantr 480 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0g𝐺) ∈ 𝑆)
9483, 93eqeltrd 2829 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0 𝐴) × (0 𝐵))) ∈ 𝑆)
95 oveq2 7398 . . . . . . . . . . 11 (𝑘 = 0 → (0C𝑘) = (0C0))
96 0nn0 12464 . . . . . . . . . . . 12 0 ∈ ℕ0
97 bcn0 14282 . . . . . . . . . . . 12 (0 ∈ ℕ0 → (0C0) = 1)
9896, 97ax-mp 5 . . . . . . . . . . 11 (0C0) = 1
9995, 98eqtrdi 2781 . . . . . . . . . 10 (𝑘 = 0 → (0C𝑘) = 1)
100 oveq2 7398 . . . . . . . . . . . . 13 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
101 0m0e0 12308 . . . . . . . . . . . . 13 (0 − 0) = 0
102100, 101eqtrdi 2781 . . . . . . . . . . . 12 (𝑘 = 0 → (0 − 𝑘) = 0)
103102oveq1d 7405 . . . . . . . . . . 11 (𝑘 = 0 → ((0 − 𝑘) 𝐴) = (0 𝐴))
104 oveq1 7397 . . . . . . . . . . 11 (𝑘 = 0 → (𝑘 𝐵) = (0 𝐵))
105103, 104oveq12d 7408 . . . . . . . . . 10 (𝑘 = 0 → (((0 − 𝑘) 𝐴) × (𝑘 𝐵)) = ((0 𝐴) × (0 𝐵)))
10699, 105oveq12d 7408 . . . . . . . . 9 (𝑘 = 0 → ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))) = (1 · ((0 𝐴) × (0 𝐵))))
10747, 106gsumsn 19891 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 0 ∈ V ∧ (1 · ((0 𝐴) × (0 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (1 · ((0 𝐴) × (0 𝐵))))
10889, 91, 94, 107syl3anc 1373 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 Σg (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (1 · ((0 𝐴) × (0 𝐵))))
10987, 108eqtrd 2765 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (1 · ((0 𝐴) × (0 𝐵))))
110 srgbinom.a . . . . . . . . . 10 + = (+g𝑅)
11147, 110mndcl 18676 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴𝑆𝐵𝑆) → (𝐴 + 𝐵) ∈ 𝑆)
11289, 45, 55, 111syl3anc 1373 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝐴 + 𝐵) ∈ 𝑆)
113112, 48eleqtrdi 2839 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝐴 + 𝐵) ∈ (Base‘𝐺))
11450, 51, 52mulg0 19013 . . . . . . 7 ((𝐴 + 𝐵) ∈ (Base‘𝐺) → (0 (𝐴 + 𝐵)) = (0g𝐺))
115113, 114syl 17 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 (𝐴 + 𝐵)) = (0g𝐺))
11683, 109, 1153eqtr4rd 2776 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))
117 simprl 770 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝑅 ∈ SRing)
11845adantl 481 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝐴𝑆)
11955adantl 481 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝐵𝑆)
120 simprr3 1224 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → (𝐴 × 𝐵) = (𝐵 × 𝐴))
121 simpl 482 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝑛 ∈ ℕ0)
122 id 22 . . . . . . . 8 ((𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))) → (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))))
12347, 65, 71, 110, 46, 52, 117, 118, 119, 120, 121, 122srgbinomlem 20146 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) ∧ (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
124123exp31 419 . . . . . 6 (𝑛 ∈ ℕ0 → ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))))
125124a2d 29 . . . . 5 (𝑛 ∈ ℕ0 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))) → ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))))
12611, 22, 33, 44, 116, 125nn0ind 12636 . . . 4 (𝑁 ∈ ℕ0 → ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))))
127126expd 415 . . 3 (𝑁 ∈ ℕ0 → (𝑅 ∈ SRing → ((𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))))
128127impcom 407 . 2 ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))))
129128imp 406 1 (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cmpt 5191  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  0cn0 12449  ...cfz 13475  Ccbc 14274  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  .gcmg 19006  mulGrpcmgp 20056  1rcur 20097  SRingcsrg 20102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-fac 14246  df-bc 14275  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-mgp 20057  df-ur 20098  df-srg 20103
This theorem is referenced by:  csrgbinom  20148
  Copyright terms: Public domain W3C validator