![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srg0cl | Structured version Visualization version GIF version |
Description: The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
srg0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
srg0cl.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
srg0cl | ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgmnd 20086 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
2 | srg0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | srg0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | mndidcl 18676 | . 2 ⊢ (𝑅 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ‘cfv 6544 Basecbs 17150 0gc0g 17391 Mndcmnd 18661 SRingcsrg 20082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-riota 7369 df-ov 7416 df-0g 17393 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-cmn 19693 df-srg 20083 |
This theorem is referenced by: srgisid 20105 srgen1zr 20112 srglmhm 20117 srgrmhm 20118 slmd0cl 32631 slmdvs0 32638 |
Copyright terms: Public domain | W3C validator |