MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srg0cl Structured version   Visualization version   GIF version

Theorem srg0cl 20116
Description: The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srg0cl.b 𝐵 = (Base‘𝑅)
srg0cl.z 0 = (0g𝑅)
Assertion
Ref Expression
srg0cl (𝑅 ∈ SRing → 0𝐵)

Proof of Theorem srg0cl
StepHypRef Expression
1 srgmnd 20106 . 2 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
2 srg0cl.b . . 3 𝐵 = (Base‘𝑅)
3 srg0cl.z . . 3 0 = (0g𝑅)
42, 3mndidcl 18654 . 2 (𝑅 ∈ Mnd → 0𝐵)
51, 4syl 17 1 (𝑅 ∈ SRing → 0𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  Basecbs 17117  0gc0g 17340  Mndcmnd 18639  SRingcsrg 20102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-cmn 19692  df-srg 20103
This theorem is referenced by:  srgisid  20125  srgen1zr  20132  srglmhm  20137  srgrmhm  20138  slmd0cl  33182  slmdvs0  33189
  Copyright terms: Public domain W3C validator