Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srg0cl | Structured version Visualization version GIF version |
Description: The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
srg0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
srg0cl.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
srg0cl | ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgmnd 19660 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
2 | srg0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | srg0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | mndidcl 18315 | . 2 ⊢ (𝑅 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 0gc0g 17067 Mndcmnd 18300 SRingcsrg 19656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cmn 19303 df-srg 19657 |
This theorem is referenced by: srgisid 19679 srgen1zr 19681 srglmhm 19686 srgrmhm 19687 slmd0cl 31373 slmdvs0 31380 |
Copyright terms: Public domain | W3C validator |