| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srg0cl | Structured version Visualization version GIF version | ||
| Description: The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| srg0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| srg0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| srg0cl | ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgmnd 20093 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
| 2 | srg0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | srg0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | mndidcl 18641 | . 2 ⊢ (𝑅 ∈ Mnd → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 Basecbs 17138 0gc0g 17361 Mndcmnd 18626 SRingcsrg 20089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-cmn 19679 df-srg 20090 |
| This theorem is referenced by: srgisid 20112 srgen1zr 20119 srglmhm 20124 srgrmhm 20125 slmd0cl 33170 slmdvs0 33177 |
| Copyright terms: Public domain | W3C validator |