MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srg0cl Structured version   Visualization version   GIF version

Theorem srg0cl 19755
Description: The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srg0cl.b 𝐵 = (Base‘𝑅)
srg0cl.z 0 = (0g𝑅)
Assertion
Ref Expression
srg0cl (𝑅 ∈ SRing → 0𝐵)

Proof of Theorem srg0cl
StepHypRef Expression
1 srgmnd 19745 . 2 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
2 srg0cl.b . . 3 𝐵 = (Base‘𝑅)
3 srg0cl.z . . 3 0 = (0g𝑅)
42, 3mndidcl 18400 . 2 (𝑅 ∈ Mnd → 0𝐵)
51, 4syl 17 1 (𝑅 ∈ SRing → 0𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  Basecbs 16912  0gc0g 17150  Mndcmnd 18385  SRingcsrg 19741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-cmn 19388  df-srg 19742
This theorem is referenced by:  srgisid  19764  srgen1zr  19766  srglmhm  19771  srgrmhm  19772  slmd0cl  31471  slmdvs0  31478
  Copyright terms: Public domain W3C validator