MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem5 Structured version   Visualization version   GIF version

Theorem uniioombllem5 24191
Description: Lemma for uniioombl 24193. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
uniioombl.n (𝜑𝑁 ∈ ℕ)
uniioombl.n2 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
uniioombl.l 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
Assertion
Ref Expression
uniioombllem5 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐹   𝑖,𝐺,𝑗,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑖,𝑗,𝑥   𝑖,𝑀,𝑗,𝑥   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗,𝑥   𝑇,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑥,𝑖,𝑗)   𝐸(𝑥,𝑖,𝑗)   𝐾(𝑖)   𝐿(𝑥,𝑖,𝑗)   𝑁(𝑥)

Proof of Theorem uniioombllem5
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 inss1 4155 . . . 4 (𝐸𝐴) ⊆ 𝐸
2 uniioombl.s . . . . 5 (𝜑𝐸 ran ((,) ∘ 𝐺))
3 uniioombl.g . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
43uniiccdif 24182 . . . . . . 7 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
54simpld 498 . . . . . 6 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
6 ovolficcss 24073 . . . . . . 7 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
73, 6syl 17 . . . . . 6 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
85, 7sstrd 3925 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
92, 8sstrd 3925 . . . 4 (𝜑𝐸 ⊆ ℝ)
10 uniioombl.e . . . 4 (𝜑 → (vol*‘𝐸) ∈ ℝ)
11 ovolsscl 24090 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
121, 9, 10, 11mp3an2i 1463 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
13 difssd 4060 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
14 ovolsscl 24090 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
1513, 9, 10, 14syl3anc 1368 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
1612, 15readdcld 10659 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ∈ ℝ)
17 inss1 4155 . . . . 5 (𝐾𝐴) ⊆ 𝐾
18 uniioombl.k . . . . . . 7 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
19 imassrn 5907 . . . . . . . 8 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
2019unissi 4809 . . . . . . 7 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
2118, 20eqsstri 3949 . . . . . 6 𝐾 ran ((,) ∘ 𝐺)
2221, 8sstrid 3926 . . . . 5 (𝜑𝐾 ⊆ ℝ)
23 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
25 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
26 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
27 uniioombl.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
28 uniioombl.t . . . . . . . 8 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
29 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
3023, 24, 25, 26, 10, 27, 3, 2, 28, 29uniioombllem1 24185 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
31 ssid 3937 . . . . . . . 8 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
3228ovollb 24083 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
333, 31, 32sylancl 589 . . . . . . 7 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
34 ovollecl 24087 . . . . . . 7 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
358, 30, 33, 34syl3anc 1368 . . . . . 6 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
36 ovolsscl 24090 . . . . . 6 ((𝐾 ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘𝐾) ∈ ℝ)
3721, 8, 35, 36mp3an2i 1463 . . . . 5 (𝜑 → (vol*‘𝐾) ∈ ℝ)
38 ovolsscl 24090 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
3917, 22, 37, 38mp3an2i 1463 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
40 difssd 4060 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
41 ovolsscl 24090 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
4240, 22, 37, 41syl3anc 1368 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
4339, 42readdcld 10659 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ∈ ℝ)
4427rpred 12419 . . . 4 (𝜑𝐶 ∈ ℝ)
4544, 44readdcld 10659 . . 3 (𝜑 → (𝐶 + 𝐶) ∈ ℝ)
4643, 45readdcld 10659 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ∈ ℝ)
47 4re 11709 . . . 4 4 ∈ ℝ
48 remulcl 10611 . . . 4 ((4 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (4 · 𝐶) ∈ ℝ)
4947, 44, 48sylancr 590 . . 3 (𝜑 → (4 · 𝐶) ∈ ℝ)
5010, 49readdcld 10659 . 2 (𝜑 → ((vol*‘𝐸) + (4 · 𝐶)) ∈ ℝ)
51 uniioombl.m . . . 4 (𝜑𝑀 ∈ ℕ)
52 uniioombl.m2 . . . 4 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
5323, 24, 25, 26, 10, 27, 3, 2, 28, 29, 51, 52, 18uniioombllem3 24189 . . 3 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
5416, 46, 53ltled 10777 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
5510, 45readdcld 10659 . . . 4 (𝜑 → ((vol*‘𝐸) + (𝐶 + 𝐶)) ∈ ℝ)
5637, 44readdcld 10659 . . . . 5 (𝜑 → ((vol*‘𝐾) + 𝐶) ∈ ℝ)
57 inss1 4155 . . . . . . . . 9 (𝐾𝐿) ⊆ 𝐾
58 ovolsscl 24090 . . . . . . . . 9 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
5957, 22, 37, 58mp3an2i 1463 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
6059, 44readdcld 10659 . . . . . . 7 (𝜑 → ((vol*‘(𝐾𝐿)) + 𝐶) ∈ ℝ)
61 difssd 4060 . . . . . . . 8 (𝜑 → (𝐾𝐿) ⊆ 𝐾)
62 ovolsscl 24090 . . . . . . . 8 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
6361, 22, 37, 62syl3anc 1368 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
64 uniioombl.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65 uniioombl.n2 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
66 uniioombl.l . . . . . . . 8 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
6723, 24, 25, 26, 10, 27, 3, 2, 28, 29, 51, 52, 18, 64, 65, 66uniioombllem4 24190 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
68 imassrn 5907 . . . . . . . . . . 11 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
6968unissi 4809 . . . . . . . . . 10 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
7069, 66, 263sstr4i 3958 . . . . . . . . 9 𝐿𝐴
71 sscon 4066 . . . . . . . . 9 (𝐿𝐴 → (𝐾𝐴) ⊆ (𝐾𝐿))
7270, 71mp1i 13 . . . . . . . 8 (𝜑 → (𝐾𝐴) ⊆ (𝐾𝐿))
7361, 22sstrd 3925 . . . . . . . 8 (𝜑 → (𝐾𝐿) ⊆ ℝ)
74 ovolss 24089 . . . . . . . 8 (((𝐾𝐴) ⊆ (𝐾𝐿) ∧ (𝐾𝐿) ⊆ ℝ) → (vol*‘(𝐾𝐴)) ≤ (vol*‘(𝐾𝐿)))
7572, 73, 74syl2anc 587 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐴)) ≤ (vol*‘(𝐾𝐿)))
7639, 42, 60, 63, 67, 75le2addd 11248 . . . . . 6 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))))
7759recnd 10658 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℂ)
7844recnd 10658 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
7963recnd 10658 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℂ)
8077, 78, 79add32d 10856 . . . . . . 7 (𝜑 → (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))) = (((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))) + 𝐶))
81 ioof 12825 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
82 inss2 4156 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
83 rexpssxrxp 10675 . . . . . . . . . . . . . . 15 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
8482, 83sstri 3924 . . . . . . . . . . . . . 14 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
85 fss 6501 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
8623, 84, 85sylancl 589 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
87 fco 6505 . . . . . . . . . . . . 13 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
8881, 86, 87sylancr 590 . . . . . . . . . . . 12 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
89 ffun 6490 . . . . . . . . . . . 12 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐹))
90 funiunfv 6985 . . . . . . . . . . . 12 (Fun ((,) ∘ 𝐹) → 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐹) “ (1...𝑁)))
9188, 89, 903syl 18 . . . . . . . . . . 11 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐹) “ (1...𝑁)))
9291, 66eqtr4di 2851 . . . . . . . . . 10 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = 𝐿)
93 fzfid 13336 . . . . . . . . . . 11 (𝜑 → (1...𝑁) ∈ Fin)
94 elfznn 12931 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
95 fvco3 6737 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
9623, 94, 95syl2an 598 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
97 ffvelrn 6826 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
9823, 94, 97syl2an 598 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
9998elin2d 4126 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) ∈ (ℝ × ℝ))
100 1st2nd2 7710 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
10199, 100syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
102101fveq2d 6649 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
103 df-ov 7138 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
104102, 103eqtr4di 2851 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ((,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
10596, 104eqtrd 2833 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
106 ioombl 24169 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ∈ dom vol
107105, 106eqeltrdi 2898 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
108107ralrimiva 3149 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
109 finiunmbl 24148 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ ∀𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol) → 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
11093, 108, 109syl2anc 587 . . . . . . . . . 10 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
11192, 110eqeltrrd 2891 . . . . . . . . 9 (𝜑𝐿 ∈ dom vol)
112 mblsplit 24136 . . . . . . . . 9 ((𝐿 ∈ dom vol ∧ 𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘𝐾) = ((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))))
113111, 22, 37, 112syl3anc 1368 . . . . . . . 8 (𝜑 → (vol*‘𝐾) = ((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))))
114113oveq1d 7150 . . . . . . 7 (𝜑 → ((vol*‘𝐾) + 𝐶) = (((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))) + 𝐶))
11580, 114eqtr4d 2836 . . . . . 6 (𝜑 → (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))) = ((vol*‘𝐾) + 𝐶))
11676, 115breqtrd 5056 . . . . 5 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ ((vol*‘𝐾) + 𝐶))
11710, 44readdcld 10659 . . . . . . 7 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
11828ovollb 24083 . . . . . . . . 9 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐾 ran ((,) ∘ 𝐺)) → (vol*‘𝐾) ≤ sup(ran 𝑇, ℝ*, < ))
1193, 21, 118sylancl 589 . . . . . . . 8 (𝜑 → (vol*‘𝐾) ≤ sup(ran 𝑇, ℝ*, < ))
12037, 30, 117, 119, 29letrd 10786 . . . . . . 7 (𝜑 → (vol*‘𝐾) ≤ ((vol*‘𝐸) + 𝐶))
12137, 117, 44, 120leadd1dd 11243 . . . . . 6 (𝜑 → ((vol*‘𝐾) + 𝐶) ≤ (((vol*‘𝐸) + 𝐶) + 𝐶))
12210recnd 10658 . . . . . . 7 (𝜑 → (vol*‘𝐸) ∈ ℂ)
123122, 78, 78addassd 10652 . . . . . 6 (𝜑 → (((vol*‘𝐸) + 𝐶) + 𝐶) = ((vol*‘𝐸) + (𝐶 + 𝐶)))
124121, 123breqtrd 5056 . . . . 5 (𝜑 → ((vol*‘𝐾) + 𝐶) ≤ ((vol*‘𝐸) + (𝐶 + 𝐶)))
12543, 56, 55, 116, 124letrd 10786 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ ((vol*‘𝐸) + (𝐶 + 𝐶)))
12643, 55, 45, 125leadd1dd 11243 . . 3 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ≤ (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)))
12745recnd 10658 . . . . 5 (𝜑 → (𝐶 + 𝐶) ∈ ℂ)
128122, 127, 127addassd 10652 . . . 4 (𝜑 → (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)) = ((vol*‘𝐸) + ((𝐶 + 𝐶) + (𝐶 + 𝐶))))
129 2t2e4 11789 . . . . . . 7 (2 · 2) = 4
130129oveq1i 7145 . . . . . 6 ((2 · 2) · 𝐶) = (4 · 𝐶)
131 2cnd 11703 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
132131, 131, 78mulassd 10653 . . . . . . 7 (𝜑 → ((2 · 2) · 𝐶) = (2 · (2 · 𝐶)))
133782timesd 11868 . . . . . . . 8 (𝜑 → (2 · 𝐶) = (𝐶 + 𝐶))
134133oveq2d 7151 . . . . . . 7 (𝜑 → (2 · (2 · 𝐶)) = (2 · (𝐶 + 𝐶)))
1351272timesd 11868 . . . . . . 7 (𝜑 → (2 · (𝐶 + 𝐶)) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
136132, 134, 1353eqtrd 2837 . . . . . 6 (𝜑 → ((2 · 2) · 𝐶) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
137130, 136syl5eqr 2847 . . . . 5 (𝜑 → (4 · 𝐶) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
138137oveq2d 7151 . . . 4 (𝜑 → ((vol*‘𝐸) + (4 · 𝐶)) = ((vol*‘𝐸) + ((𝐶 + 𝐶) + (𝐶 + 𝐶))))
139128, 138eqtr4d 2836 . . 3 (𝜑 → (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)) = ((vol*‘𝐸) + (4 · 𝐶)))
140126, 139breqtrd 5056 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
14116, 46, 50, 54, 140letrd 10786 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  cdif 3878  cin 3880  wss 3881  𝒫 cpw 4497  cop 4531   cuni 4800   ciun 4881  Disj wdisj 4995   class class class wbr 5030   × cxp 5517  dom cdm 5519  ran crn 5520  cima 5522  ccom 5523  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  Fincfn 8492  supcsup 8888  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  4c4 11682  +crp 12377  (,)cioo 12726  [,]cicc 12729  ...cfz 12885  seqcseq 13364  abscabs 14585  Σcsu 15034  vol*covol 24066  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069
This theorem is referenced by:  uniioombllem6  24192
  Copyright terms: Public domain W3C validator