MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem5 Structured version   Visualization version   GIF version

Theorem uniioombllem5 23645
Description: Lemma for uniioombl 23647. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
uniioombl.n (𝜑𝑁 ∈ ℕ)
uniioombl.n2 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
uniioombl.l 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
Assertion
Ref Expression
uniioombllem5 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐹   𝑖,𝐺,𝑗,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑖,𝑗,𝑥   𝑖,𝑀,𝑗,𝑥   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗,𝑥   𝑇,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑥,𝑖,𝑗)   𝐸(𝑥,𝑖,𝑗)   𝐾(𝑖)   𝐿(𝑥,𝑖,𝑗)   𝑁(𝑥)

Proof of Theorem uniioombllem5
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 inss1 3992 . . . . 5 (𝐸𝐴) ⊆ 𝐸
21a1i 11 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
3 uniioombl.s . . . . 5 (𝜑𝐸 ran ((,) ∘ 𝐺))
4 uniioombl.g . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
54uniiccdif 23636 . . . . . . 7 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
65simpld 488 . . . . . 6 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
7 ovolficcss 23527 . . . . . . 7 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
84, 7syl 17 . . . . . 6 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
96, 8sstrd 3771 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
103, 9sstrd 3771 . . . 4 (𝜑𝐸 ⊆ ℝ)
11 uniioombl.e . . . 4 (𝜑 → (vol*‘𝐸) ∈ ℝ)
12 ovolsscl 23544 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
132, 10, 11, 12syl3anc 1490 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
14 difssd 3900 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
15 ovolsscl 23544 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
1614, 10, 11, 15syl3anc 1490 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
1713, 16readdcld 10323 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ∈ ℝ)
18 inss1 3992 . . . . . 6 (𝐾𝐴) ⊆ 𝐾
1918a1i 11 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
20 uniioombl.k . . . . . . . 8 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
21 imassrn 5659 . . . . . . . . 9 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
2221unissi 4619 . . . . . . . 8 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
2320, 22eqsstri 3795 . . . . . . 7 𝐾 ran ((,) ∘ 𝐺)
2423a1i 11 . . . . . 6 (𝜑𝐾 ran ((,) ∘ 𝐺))
2524, 9sstrd 3771 . . . . 5 (𝜑𝐾 ⊆ ℝ)
26 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
27 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
28 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
29 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
30 uniioombl.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
31 uniioombl.t . . . . . . . 8 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
32 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
3326, 27, 28, 29, 11, 30, 4, 3, 31, 32uniioombllem1 23639 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
34 ssid 3783 . . . . . . . 8 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
3531ovollb 23537 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
364, 34, 35sylancl 580 . . . . . . 7 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
37 ovollecl 23541 . . . . . . 7 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
389, 33, 36, 37syl3anc 1490 . . . . . 6 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
39 ovolsscl 23544 . . . . . 6 ((𝐾 ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘𝐾) ∈ ℝ)
4024, 9, 38, 39syl3anc 1490 . . . . 5 (𝜑 → (vol*‘𝐾) ∈ ℝ)
41 ovolsscl 23544 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
4219, 25, 40, 41syl3anc 1490 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
43 difssd 3900 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
44 ovolsscl 23544 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
4543, 25, 40, 44syl3anc 1490 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
4642, 45readdcld 10323 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ∈ ℝ)
4730rpred 12070 . . . 4 (𝜑𝐶 ∈ ℝ)
4847, 47readdcld 10323 . . 3 (𝜑 → (𝐶 + 𝐶) ∈ ℝ)
4946, 48readdcld 10323 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ∈ ℝ)
50 4re 11357 . . . 4 4 ∈ ℝ
51 remulcl 10274 . . . 4 ((4 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (4 · 𝐶) ∈ ℝ)
5250, 47, 51sylancr 581 . . 3 (𝜑 → (4 · 𝐶) ∈ ℝ)
5311, 52readdcld 10323 . 2 (𝜑 → ((vol*‘𝐸) + (4 · 𝐶)) ∈ ℝ)
54 uniioombl.m . . . 4 (𝜑𝑀 ∈ ℕ)
55 uniioombl.m2 . . . 4 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
5626, 27, 28, 29, 11, 30, 4, 3, 31, 32, 54, 55, 20uniioombllem3 23643 . . 3 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
5717, 49, 56ltled 10439 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
5811, 48readdcld 10323 . . . 4 (𝜑 → ((vol*‘𝐸) + (𝐶 + 𝐶)) ∈ ℝ)
5940, 47readdcld 10323 . . . . 5 (𝜑 → ((vol*‘𝐾) + 𝐶) ∈ ℝ)
60 inss1 3992 . . . . . . . . . 10 (𝐾𝐿) ⊆ 𝐾
6160a1i 11 . . . . . . . . 9 (𝜑 → (𝐾𝐿) ⊆ 𝐾)
62 ovolsscl 23544 . . . . . . . . 9 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
6361, 25, 40, 62syl3anc 1490 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
6463, 47readdcld 10323 . . . . . . 7 (𝜑 → ((vol*‘(𝐾𝐿)) + 𝐶) ∈ ℝ)
65 difssd 3900 . . . . . . . 8 (𝜑 → (𝐾𝐿) ⊆ 𝐾)
66 ovolsscl 23544 . . . . . . . 8 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
6765, 25, 40, 66syl3anc 1490 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
68 uniioombl.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
69 uniioombl.n2 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
70 uniioombl.l . . . . . . . 8 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
7126, 27, 28, 29, 11, 30, 4, 3, 31, 32, 54, 55, 20, 68, 69, 70uniioombllem4 23644 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
72 imassrn 5659 . . . . . . . . . . 11 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
7372unissi 4619 . . . . . . . . . 10 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
7473, 70, 293sstr4i 3804 . . . . . . . . 9 𝐿𝐴
75 sscon 3906 . . . . . . . . 9 (𝐿𝐴 → (𝐾𝐴) ⊆ (𝐾𝐿))
7674, 75mp1i 13 . . . . . . . 8 (𝜑 → (𝐾𝐴) ⊆ (𝐾𝐿))
7765, 25sstrd 3771 . . . . . . . 8 (𝜑 → (𝐾𝐿) ⊆ ℝ)
78 ovolss 23543 . . . . . . . 8 (((𝐾𝐴) ⊆ (𝐾𝐿) ∧ (𝐾𝐿) ⊆ ℝ) → (vol*‘(𝐾𝐴)) ≤ (vol*‘(𝐾𝐿)))
7976, 77, 78syl2anc 579 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐴)) ≤ (vol*‘(𝐾𝐿)))
8042, 45, 64, 67, 71, 79le2addd 10900 . . . . . 6 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))))
8163recnd 10322 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℂ)
8247recnd 10322 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
8367recnd 10322 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℂ)
8481, 82, 83add32d 10517 . . . . . . 7 (𝜑 → (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))) = (((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))) + 𝐶))
85 ioof 12474 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
86 inss2 3993 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
87 rexpssxrxp 10338 . . . . . . . . . . . . . . 15 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
8886, 87sstri 3770 . . . . . . . . . . . . . 14 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
89 fss 6236 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
9026, 88, 89sylancl 580 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
91 fco 6240 . . . . . . . . . . . . 13 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
9285, 90, 91sylancr 581 . . . . . . . . . . . 12 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
93 ffun 6226 . . . . . . . . . . . 12 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐹))
94 funiunfv 6698 . . . . . . . . . . . 12 (Fun ((,) ∘ 𝐹) → 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐹) “ (1...𝑁)))
9592, 93, 943syl 18 . . . . . . . . . . 11 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐹) “ (1...𝑁)))
9695, 70syl6eqr 2817 . . . . . . . . . 10 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = 𝐿)
97 fzfid 12980 . . . . . . . . . . 11 (𝜑 → (1...𝑁) ∈ Fin)
98 elfznn 12577 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
99 fvco3 6464 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
10026, 98, 99syl2an 589 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
101 ffvelrn 6547 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
10226, 98, 101syl2an 589 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
10386, 102sseldi 3759 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) ∈ (ℝ × ℝ))
104 1st2nd2 7405 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
105103, 104syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
106105fveq2d 6379 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
107 df-ov 6845 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
108106, 107syl6eqr 2817 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ((,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
109100, 108eqtrd 2799 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
110 ioombl 23623 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ∈ dom vol
111109, 110syl6eqel 2852 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
112111ralrimiva 3113 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
113 finiunmbl 23602 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ ∀𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol) → 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
11497, 112, 113syl2anc 579 . . . . . . . . . 10 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
11596, 114eqeltrrd 2845 . . . . . . . . 9 (𝜑𝐿 ∈ dom vol)
116 mblsplit 23590 . . . . . . . . 9 ((𝐿 ∈ dom vol ∧ 𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘𝐾) = ((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))))
117115, 25, 40, 116syl3anc 1490 . . . . . . . 8 (𝜑 → (vol*‘𝐾) = ((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))))
118117oveq1d 6857 . . . . . . 7 (𝜑 → ((vol*‘𝐾) + 𝐶) = (((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))) + 𝐶))
11984, 118eqtr4d 2802 . . . . . 6 (𝜑 → (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))) = ((vol*‘𝐾) + 𝐶))
12080, 119breqtrd 4835 . . . . 5 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ ((vol*‘𝐾) + 𝐶))
12111, 47readdcld 10323 . . . . . . 7 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
12231ovollb 23537 . . . . . . . . 9 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐾 ran ((,) ∘ 𝐺)) → (vol*‘𝐾) ≤ sup(ran 𝑇, ℝ*, < ))
1234, 23, 122sylancl 580 . . . . . . . 8 (𝜑 → (vol*‘𝐾) ≤ sup(ran 𝑇, ℝ*, < ))
12440, 33, 121, 123, 32letrd 10448 . . . . . . 7 (𝜑 → (vol*‘𝐾) ≤ ((vol*‘𝐸) + 𝐶))
12540, 121, 47, 124leadd1dd 10895 . . . . . 6 (𝜑 → ((vol*‘𝐾) + 𝐶) ≤ (((vol*‘𝐸) + 𝐶) + 𝐶))
12611recnd 10322 . . . . . . 7 (𝜑 → (vol*‘𝐸) ∈ ℂ)
127126, 82, 82addassd 10316 . . . . . 6 (𝜑 → (((vol*‘𝐸) + 𝐶) + 𝐶) = ((vol*‘𝐸) + (𝐶 + 𝐶)))
128125, 127breqtrd 4835 . . . . 5 (𝜑 → ((vol*‘𝐾) + 𝐶) ≤ ((vol*‘𝐸) + (𝐶 + 𝐶)))
12946, 59, 58, 120, 128letrd 10448 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ ((vol*‘𝐸) + (𝐶 + 𝐶)))
13046, 58, 48, 129leadd1dd 10895 . . 3 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ≤ (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)))
13148recnd 10322 . . . . 5 (𝜑 → (𝐶 + 𝐶) ∈ ℂ)
132126, 131, 131addassd 10316 . . . 4 (𝜑 → (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)) = ((vol*‘𝐸) + ((𝐶 + 𝐶) + (𝐶 + 𝐶))))
133 2t2e4 11442 . . . . . . 7 (2 · 2) = 4
134133oveq1i 6852 . . . . . 6 ((2 · 2) · 𝐶) = (4 · 𝐶)
135 2cnd 11350 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
136135, 135, 82mulassd 10317 . . . . . . 7 (𝜑 → ((2 · 2) · 𝐶) = (2 · (2 · 𝐶)))
137822timesd 11521 . . . . . . . 8 (𝜑 → (2 · 𝐶) = (𝐶 + 𝐶))
138137oveq2d 6858 . . . . . . 7 (𝜑 → (2 · (2 · 𝐶)) = (2 · (𝐶 + 𝐶)))
1391312timesd 11521 . . . . . . 7 (𝜑 → (2 · (𝐶 + 𝐶)) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
140136, 138, 1393eqtrd 2803 . . . . . 6 (𝜑 → ((2 · 2) · 𝐶) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
141134, 140syl5eqr 2813 . . . . 5 (𝜑 → (4 · 𝐶) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
142141oveq2d 6858 . . . 4 (𝜑 → ((vol*‘𝐸) + (4 · 𝐶)) = ((vol*‘𝐸) + ((𝐶 + 𝐶) + (𝐶 + 𝐶))))
143132, 142eqtr4d 2802 . . 3 (𝜑 → (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)) = ((vol*‘𝐸) + (4 · 𝐶)))
144130, 143breqtrd 4835 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
14517, 49, 53, 57, 144letrd 10448 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  cdif 3729  cin 3731  wss 3732  𝒫 cpw 4315  cop 4340   cuni 4594   ciun 4676  Disj wdisj 4777   class class class wbr 4809   × cxp 5275  dom cdm 5277  ran crn 5278  cima 5280  ccom 5281  Fun wfun 6062  wf 6064  cfv 6068  (class class class)co 6842  1st c1st 7364  2nd c2nd 7365  Fincfn 8160  supcsup 8553  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  *cxr 10327   < clt 10328  cle 10329  cmin 10520   / cdiv 10938  cn 11274  2c2 11327  4c4 11329  +crp 12028  (,)cioo 12377  [,]cicc 12380  ...cfz 12533  seqcseq 13008  abscabs 14259  Σcsu 14701  vol*covol 23520  volcvol 23521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-rlim 14505  df-sum 14702  df-rest 16349  df-topgen 16370  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-bases 21030  df-cmp 21470  df-ovol 23522  df-vol 23523
This theorem is referenced by:  uniioombllem6  23646
  Copyright terms: Public domain W3C validator