MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem5 Structured version   Visualization version   GIF version

Theorem uniioombllem5 25641
Description: Lemma for uniioombl 25643. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
uniioombl.n (𝜑𝑁 ∈ ℕ)
uniioombl.n2 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
uniioombl.l 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
Assertion
Ref Expression
uniioombllem5 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐹   𝑖,𝐺,𝑗,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑖,𝑗,𝑥   𝑖,𝑀,𝑗,𝑥   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗,𝑥   𝑇,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑥,𝑖,𝑗)   𝐸(𝑥,𝑖,𝑗)   𝐾(𝑖)   𝐿(𝑥,𝑖,𝑗)   𝑁(𝑥)

Proof of Theorem uniioombllem5
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 inss1 4258 . . . 4 (𝐸𝐴) ⊆ 𝐸
2 uniioombl.s . . . . 5 (𝜑𝐸 ran ((,) ∘ 𝐺))
3 uniioombl.g . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
43uniiccdif 25632 . . . . . . 7 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
54simpld 494 . . . . . 6 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
6 ovolficcss 25523 . . . . . . 7 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
73, 6syl 17 . . . . . 6 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
85, 7sstrd 4019 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
92, 8sstrd 4019 . . . 4 (𝜑𝐸 ⊆ ℝ)
10 uniioombl.e . . . 4 (𝜑 → (vol*‘𝐸) ∈ ℝ)
11 ovolsscl 25540 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
121, 9, 10, 11mp3an2i 1466 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
13 difssd 4160 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
14 ovolsscl 25540 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
1513, 9, 10, 14syl3anc 1371 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
1612, 15readdcld 11319 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ∈ ℝ)
17 inss1 4258 . . . . 5 (𝐾𝐴) ⊆ 𝐾
18 uniioombl.k . . . . . . 7 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
19 imassrn 6100 . . . . . . . 8 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
2019unissi 4940 . . . . . . 7 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
2118, 20eqsstri 4043 . . . . . 6 𝐾 ran ((,) ∘ 𝐺)
2221, 8sstrid 4020 . . . . 5 (𝜑𝐾 ⊆ ℝ)
23 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
25 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
26 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
27 uniioombl.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
28 uniioombl.t . . . . . . . 8 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
29 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
3023, 24, 25, 26, 10, 27, 3, 2, 28, 29uniioombllem1 25635 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
31 ssid 4031 . . . . . . . 8 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
3228ovollb 25533 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
333, 31, 32sylancl 585 . . . . . . 7 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
34 ovollecl 25537 . . . . . . 7 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
358, 30, 33, 34syl3anc 1371 . . . . . 6 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
36 ovolsscl 25540 . . . . . 6 ((𝐾 ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘𝐾) ∈ ℝ)
3721, 8, 35, 36mp3an2i 1466 . . . . 5 (𝜑 → (vol*‘𝐾) ∈ ℝ)
38 ovolsscl 25540 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
3917, 22, 37, 38mp3an2i 1466 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
40 difssd 4160 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
41 ovolsscl 25540 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
4240, 22, 37, 41syl3anc 1371 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
4339, 42readdcld 11319 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ∈ ℝ)
4427rpred 13099 . . . 4 (𝜑𝐶 ∈ ℝ)
4544, 44readdcld 11319 . . 3 (𝜑 → (𝐶 + 𝐶) ∈ ℝ)
4643, 45readdcld 11319 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ∈ ℝ)
47 4re 12377 . . . 4 4 ∈ ℝ
48 remulcl 11269 . . . 4 ((4 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (4 · 𝐶) ∈ ℝ)
4947, 44, 48sylancr 586 . . 3 (𝜑 → (4 · 𝐶) ∈ ℝ)
5010, 49readdcld 11319 . 2 (𝜑 → ((vol*‘𝐸) + (4 · 𝐶)) ∈ ℝ)
51 uniioombl.m . . . 4 (𝜑𝑀 ∈ ℕ)
52 uniioombl.m2 . . . 4 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
5323, 24, 25, 26, 10, 27, 3, 2, 28, 29, 51, 52, 18uniioombllem3 25639 . . 3 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
5416, 46, 53ltled 11438 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
5510, 45readdcld 11319 . . . 4 (𝜑 → ((vol*‘𝐸) + (𝐶 + 𝐶)) ∈ ℝ)
5637, 44readdcld 11319 . . . . 5 (𝜑 → ((vol*‘𝐾) + 𝐶) ∈ ℝ)
57 inss1 4258 . . . . . . . . 9 (𝐾𝐿) ⊆ 𝐾
58 ovolsscl 25540 . . . . . . . . 9 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
5957, 22, 37, 58mp3an2i 1466 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
6059, 44readdcld 11319 . . . . . . 7 (𝜑 → ((vol*‘(𝐾𝐿)) + 𝐶) ∈ ℝ)
61 difssd 4160 . . . . . . . 8 (𝜑 → (𝐾𝐿) ⊆ 𝐾)
62 ovolsscl 25540 . . . . . . . 8 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
6361, 22, 37, 62syl3anc 1371 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
64 uniioombl.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65 uniioombl.n2 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
66 uniioombl.l . . . . . . . 8 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
6723, 24, 25, 26, 10, 27, 3, 2, 28, 29, 51, 52, 18, 64, 65, 66uniioombllem4 25640 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
68 imassrn 6100 . . . . . . . . . . 11 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
6968unissi 4940 . . . . . . . . . 10 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
7069, 66, 263sstr4i 4052 . . . . . . . . 9 𝐿𝐴
71 sscon 4166 . . . . . . . . 9 (𝐿𝐴 → (𝐾𝐴) ⊆ (𝐾𝐿))
7270, 71mp1i 13 . . . . . . . 8 (𝜑 → (𝐾𝐴) ⊆ (𝐾𝐿))
7361, 22sstrd 4019 . . . . . . . 8 (𝜑 → (𝐾𝐿) ⊆ ℝ)
74 ovolss 25539 . . . . . . . 8 (((𝐾𝐴) ⊆ (𝐾𝐿) ∧ (𝐾𝐿) ⊆ ℝ) → (vol*‘(𝐾𝐴)) ≤ (vol*‘(𝐾𝐿)))
7572, 73, 74syl2anc 583 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐴)) ≤ (vol*‘(𝐾𝐿)))
7639, 42, 60, 63, 67, 75le2addd 11909 . . . . . 6 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))))
7759recnd 11318 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℂ)
7844recnd 11318 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
7963recnd 11318 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℂ)
8077, 78, 79add32d 11517 . . . . . . 7 (𝜑 → (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))) = (((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))) + 𝐶))
81 ioof 13507 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
82 inss2 4259 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
83 rexpssxrxp 11335 . . . . . . . . . . . . . . 15 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
8482, 83sstri 4018 . . . . . . . . . . . . . 14 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
85 fss 6763 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
8623, 84, 85sylancl 585 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
87 fco 6771 . . . . . . . . . . . . 13 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
8881, 86, 87sylancr 586 . . . . . . . . . . . 12 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
89 ffun 6750 . . . . . . . . . . . 12 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐹))
90 funiunfv 7285 . . . . . . . . . . . 12 (Fun ((,) ∘ 𝐹) → 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐹) “ (1...𝑁)))
9188, 89, 903syl 18 . . . . . . . . . . 11 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐹) “ (1...𝑁)))
9291, 66eqtr4di 2798 . . . . . . . . . 10 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = 𝐿)
93 fzfid 14024 . . . . . . . . . . 11 (𝜑 → (1...𝑁) ∈ Fin)
94 elfznn 13613 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
95 fvco3 7021 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
9623, 94, 95syl2an 595 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
97 ffvelcdm 7115 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
9823, 94, 97syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
9998elin2d 4228 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) ∈ (ℝ × ℝ))
100 1st2nd2 8069 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
10199, 100syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
102101fveq2d 6924 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
103 df-ov 7451 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
104102, 103eqtr4di 2798 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ((,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
10596, 104eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
106 ioombl 25619 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ∈ dom vol
107105, 106eqeltrdi 2852 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
108107ralrimiva 3152 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
109 finiunmbl 25598 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ ∀𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol) → 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
11093, 108, 109syl2anc 583 . . . . . . . . . 10 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
11192, 110eqeltrrd 2845 . . . . . . . . 9 (𝜑𝐿 ∈ dom vol)
112 mblsplit 25586 . . . . . . . . 9 ((𝐿 ∈ dom vol ∧ 𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘𝐾) = ((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))))
113111, 22, 37, 112syl3anc 1371 . . . . . . . 8 (𝜑 → (vol*‘𝐾) = ((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))))
114113oveq1d 7463 . . . . . . 7 (𝜑 → ((vol*‘𝐾) + 𝐶) = (((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))) + 𝐶))
11580, 114eqtr4d 2783 . . . . . 6 (𝜑 → (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))) = ((vol*‘𝐾) + 𝐶))
11676, 115breqtrd 5192 . . . . 5 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ ((vol*‘𝐾) + 𝐶))
11710, 44readdcld 11319 . . . . . . 7 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
11828ovollb 25533 . . . . . . . . 9 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐾 ran ((,) ∘ 𝐺)) → (vol*‘𝐾) ≤ sup(ran 𝑇, ℝ*, < ))
1193, 21, 118sylancl 585 . . . . . . . 8 (𝜑 → (vol*‘𝐾) ≤ sup(ran 𝑇, ℝ*, < ))
12037, 30, 117, 119, 29letrd 11447 . . . . . . 7 (𝜑 → (vol*‘𝐾) ≤ ((vol*‘𝐸) + 𝐶))
12137, 117, 44, 120leadd1dd 11904 . . . . . 6 (𝜑 → ((vol*‘𝐾) + 𝐶) ≤ (((vol*‘𝐸) + 𝐶) + 𝐶))
12210recnd 11318 . . . . . . 7 (𝜑 → (vol*‘𝐸) ∈ ℂ)
123122, 78, 78addassd 11312 . . . . . 6 (𝜑 → (((vol*‘𝐸) + 𝐶) + 𝐶) = ((vol*‘𝐸) + (𝐶 + 𝐶)))
124121, 123breqtrd 5192 . . . . 5 (𝜑 → ((vol*‘𝐾) + 𝐶) ≤ ((vol*‘𝐸) + (𝐶 + 𝐶)))
12543, 56, 55, 116, 124letrd 11447 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ ((vol*‘𝐸) + (𝐶 + 𝐶)))
12643, 55, 45, 125leadd1dd 11904 . . 3 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ≤ (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)))
12745recnd 11318 . . . . 5 (𝜑 → (𝐶 + 𝐶) ∈ ℂ)
128122, 127, 127addassd 11312 . . . 4 (𝜑 → (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)) = ((vol*‘𝐸) + ((𝐶 + 𝐶) + (𝐶 + 𝐶))))
129 2t2e4 12457 . . . . . . 7 (2 · 2) = 4
130129oveq1i 7458 . . . . . 6 ((2 · 2) · 𝐶) = (4 · 𝐶)
131 2cnd 12371 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
132131, 131, 78mulassd 11313 . . . . . . 7 (𝜑 → ((2 · 2) · 𝐶) = (2 · (2 · 𝐶)))
133782timesd 12536 . . . . . . . 8 (𝜑 → (2 · 𝐶) = (𝐶 + 𝐶))
134133oveq2d 7464 . . . . . . 7 (𝜑 → (2 · (2 · 𝐶)) = (2 · (𝐶 + 𝐶)))
1351272timesd 12536 . . . . . . 7 (𝜑 → (2 · (𝐶 + 𝐶)) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
136132, 134, 1353eqtrd 2784 . . . . . 6 (𝜑 → ((2 · 2) · 𝐶) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
137130, 136eqtr3id 2794 . . . . 5 (𝜑 → (4 · 𝐶) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
138137oveq2d 7464 . . . 4 (𝜑 → ((vol*‘𝐸) + (4 · 𝐶)) = ((vol*‘𝐸) + ((𝐶 + 𝐶) + (𝐶 + 𝐶))))
139128, 138eqtr4d 2783 . . 3 (𝜑 → (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)) = ((vol*‘𝐸) + (4 · 𝐶)))
140126, 139breqtrd 5192 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
14116, 46, 50, 54, 140letrd 11447 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cin 3975  wss 3976  𝒫 cpw 4622  cop 4654   cuni 4931   ciun 5015  Disj wdisj 5133   class class class wbr 5166   × cxp 5698  dom cdm 5700  ran crn 5701  cima 5703  ccom 5704  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  Fincfn 9003  supcsup 9509  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  4c4 12350  +crp 13057  (,)cioo 13407  [,]cicc 13410  ...cfz 13567  seqcseq 14052  abscabs 15283  Σcsu 15734  vol*covol 25516  volcvol 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519
This theorem is referenced by:  uniioombllem6  25642
  Copyright terms: Public domain W3C validator