MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem5 Structured version   Visualization version   GIF version

Theorem uniioombllem5 24751
Description: Lemma for uniioombl 24753. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
uniioombl.n (𝜑𝑁 ∈ ℕ)
uniioombl.n2 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
uniioombl.l 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
Assertion
Ref Expression
uniioombllem5 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐹   𝑖,𝐺,𝑗,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑖,𝑗,𝑥   𝑖,𝑀,𝑗,𝑥   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗,𝑥   𝑇,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑥,𝑖,𝑗)   𝐸(𝑥,𝑖,𝑗)   𝐾(𝑖)   𝐿(𝑥,𝑖,𝑗)   𝑁(𝑥)

Proof of Theorem uniioombllem5
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 inss1 4162 . . . 4 (𝐸𝐴) ⊆ 𝐸
2 uniioombl.s . . . . 5 (𝜑𝐸 ran ((,) ∘ 𝐺))
3 uniioombl.g . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
43uniiccdif 24742 . . . . . . 7 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
54simpld 495 . . . . . 6 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
6 ovolficcss 24633 . . . . . . 7 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
73, 6syl 17 . . . . . 6 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
85, 7sstrd 3931 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
92, 8sstrd 3931 . . . 4 (𝜑𝐸 ⊆ ℝ)
10 uniioombl.e . . . 4 (𝜑 → (vol*‘𝐸) ∈ ℝ)
11 ovolsscl 24650 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
121, 9, 10, 11mp3an2i 1465 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
13 difssd 4067 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
14 ovolsscl 24650 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
1513, 9, 10, 14syl3anc 1370 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
1612, 15readdcld 11004 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ∈ ℝ)
17 inss1 4162 . . . . 5 (𝐾𝐴) ⊆ 𝐾
18 uniioombl.k . . . . . . 7 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
19 imassrn 5980 . . . . . . . 8 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
2019unissi 4848 . . . . . . 7 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
2118, 20eqsstri 3955 . . . . . 6 𝐾 ran ((,) ∘ 𝐺)
2221, 8sstrid 3932 . . . . 5 (𝜑𝐾 ⊆ ℝ)
23 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
25 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
26 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
27 uniioombl.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
28 uniioombl.t . . . . . . . 8 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
29 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
3023, 24, 25, 26, 10, 27, 3, 2, 28, 29uniioombllem1 24745 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
31 ssid 3943 . . . . . . . 8 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
3228ovollb 24643 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
333, 31, 32sylancl 586 . . . . . . 7 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
34 ovollecl 24647 . . . . . . 7 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
358, 30, 33, 34syl3anc 1370 . . . . . 6 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
36 ovolsscl 24650 . . . . . 6 ((𝐾 ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘𝐾) ∈ ℝ)
3721, 8, 35, 36mp3an2i 1465 . . . . 5 (𝜑 → (vol*‘𝐾) ∈ ℝ)
38 ovolsscl 24650 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
3917, 22, 37, 38mp3an2i 1465 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
40 difssd 4067 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
41 ovolsscl 24650 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
4240, 22, 37, 41syl3anc 1370 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
4339, 42readdcld 11004 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ∈ ℝ)
4427rpred 12772 . . . 4 (𝜑𝐶 ∈ ℝ)
4544, 44readdcld 11004 . . 3 (𝜑 → (𝐶 + 𝐶) ∈ ℝ)
4643, 45readdcld 11004 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ∈ ℝ)
47 4re 12057 . . . 4 4 ∈ ℝ
48 remulcl 10956 . . . 4 ((4 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (4 · 𝐶) ∈ ℝ)
4947, 44, 48sylancr 587 . . 3 (𝜑 → (4 · 𝐶) ∈ ℝ)
5010, 49readdcld 11004 . 2 (𝜑 → ((vol*‘𝐸) + (4 · 𝐶)) ∈ ℝ)
51 uniioombl.m . . . 4 (𝜑𝑀 ∈ ℕ)
52 uniioombl.m2 . . . 4 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
5323, 24, 25, 26, 10, 27, 3, 2, 28, 29, 51, 52, 18uniioombllem3 24749 . . 3 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
5416, 46, 53ltled 11123 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
5510, 45readdcld 11004 . . . 4 (𝜑 → ((vol*‘𝐸) + (𝐶 + 𝐶)) ∈ ℝ)
5637, 44readdcld 11004 . . . . 5 (𝜑 → ((vol*‘𝐾) + 𝐶) ∈ ℝ)
57 inss1 4162 . . . . . . . . 9 (𝐾𝐿) ⊆ 𝐾
58 ovolsscl 24650 . . . . . . . . 9 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
5957, 22, 37, 58mp3an2i 1465 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
6059, 44readdcld 11004 . . . . . . 7 (𝜑 → ((vol*‘(𝐾𝐿)) + 𝐶) ∈ ℝ)
61 difssd 4067 . . . . . . . 8 (𝜑 → (𝐾𝐿) ⊆ 𝐾)
62 ovolsscl 24650 . . . . . . . 8 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
6361, 22, 37, 62syl3anc 1370 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
64 uniioombl.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65 uniioombl.n2 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
66 uniioombl.l . . . . . . . 8 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
6723, 24, 25, 26, 10, 27, 3, 2, 28, 29, 51, 52, 18, 64, 65, 66uniioombllem4 24750 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
68 imassrn 5980 . . . . . . . . . . 11 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
6968unissi 4848 . . . . . . . . . 10 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
7069, 66, 263sstr4i 3964 . . . . . . . . 9 𝐿𝐴
71 sscon 4073 . . . . . . . . 9 (𝐿𝐴 → (𝐾𝐴) ⊆ (𝐾𝐿))
7270, 71mp1i 13 . . . . . . . 8 (𝜑 → (𝐾𝐴) ⊆ (𝐾𝐿))
7361, 22sstrd 3931 . . . . . . . 8 (𝜑 → (𝐾𝐿) ⊆ ℝ)
74 ovolss 24649 . . . . . . . 8 (((𝐾𝐴) ⊆ (𝐾𝐿) ∧ (𝐾𝐿) ⊆ ℝ) → (vol*‘(𝐾𝐴)) ≤ (vol*‘(𝐾𝐿)))
7572, 73, 74syl2anc 584 . . . . . . 7 (𝜑 → (vol*‘(𝐾𝐴)) ≤ (vol*‘(𝐾𝐿)))
7639, 42, 60, 63, 67, 75le2addd 11594 . . . . . 6 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))))
7759recnd 11003 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℂ)
7844recnd 11003 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
7963recnd 11003 . . . . . . . 8 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℂ)
8077, 78, 79add32d 11202 . . . . . . 7 (𝜑 → (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))) = (((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))) + 𝐶))
81 ioof 13179 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
82 inss2 4163 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
83 rexpssxrxp 11020 . . . . . . . . . . . . . . 15 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
8482, 83sstri 3930 . . . . . . . . . . . . . 14 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
85 fss 6617 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
8623, 84, 85sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
87 fco 6624 . . . . . . . . . . . . 13 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
8881, 86, 87sylancr 587 . . . . . . . . . . . 12 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
89 ffun 6603 . . . . . . . . . . . 12 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐹))
90 funiunfv 7121 . . . . . . . . . . . 12 (Fun ((,) ∘ 𝐹) → 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐹) “ (1...𝑁)))
9188, 89, 903syl 18 . . . . . . . . . . 11 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐹) “ (1...𝑁)))
9291, 66eqtr4di 2796 . . . . . . . . . 10 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = 𝐿)
93 fzfid 13693 . . . . . . . . . . 11 (𝜑 → (1...𝑁) ∈ Fin)
94 elfznn 13285 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
95 fvco3 6867 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
9623, 94, 95syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
97 ffvelrn 6959 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
9823, 94, 97syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
9998elin2d 4133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) ∈ (ℝ × ℝ))
100 1st2nd2 7870 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
10199, 100syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
102101fveq2d 6778 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
103 df-ov 7278 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
104102, 103eqtr4di 2796 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ((,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
10596, 104eqtrd 2778 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
106 ioombl 24729 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ∈ dom vol
107105, 106eqeltrdi 2847 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
108107ralrimiva 3103 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
109 finiunmbl 24708 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ ∀𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol) → 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
11093, 108, 109syl2anc 584 . . . . . . . . . 10 (𝜑 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
11192, 110eqeltrrd 2840 . . . . . . . . 9 (𝜑𝐿 ∈ dom vol)
112 mblsplit 24696 . . . . . . . . 9 ((𝐿 ∈ dom vol ∧ 𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘𝐾) = ((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))))
113111, 22, 37, 112syl3anc 1370 . . . . . . . 8 (𝜑 → (vol*‘𝐾) = ((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))))
114113oveq1d 7290 . . . . . . 7 (𝜑 → ((vol*‘𝐾) + 𝐶) = (((vol*‘(𝐾𝐿)) + (vol*‘(𝐾𝐿))) + 𝐶))
11580, 114eqtr4d 2781 . . . . . 6 (𝜑 → (((vol*‘(𝐾𝐿)) + 𝐶) + (vol*‘(𝐾𝐿))) = ((vol*‘𝐾) + 𝐶))
11676, 115breqtrd 5100 . . . . 5 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ ((vol*‘𝐾) + 𝐶))
11710, 44readdcld 11004 . . . . . . 7 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
11828ovollb 24643 . . . . . . . . 9 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐾 ran ((,) ∘ 𝐺)) → (vol*‘𝐾) ≤ sup(ran 𝑇, ℝ*, < ))
1193, 21, 118sylancl 586 . . . . . . . 8 (𝜑 → (vol*‘𝐾) ≤ sup(ran 𝑇, ℝ*, < ))
12037, 30, 117, 119, 29letrd 11132 . . . . . . 7 (𝜑 → (vol*‘𝐾) ≤ ((vol*‘𝐸) + 𝐶))
12137, 117, 44, 120leadd1dd 11589 . . . . . 6 (𝜑 → ((vol*‘𝐾) + 𝐶) ≤ (((vol*‘𝐸) + 𝐶) + 𝐶))
12210recnd 11003 . . . . . . 7 (𝜑 → (vol*‘𝐸) ∈ ℂ)
123122, 78, 78addassd 10997 . . . . . 6 (𝜑 → (((vol*‘𝐸) + 𝐶) + 𝐶) = ((vol*‘𝐸) + (𝐶 + 𝐶)))
124121, 123breqtrd 5100 . . . . 5 (𝜑 → ((vol*‘𝐾) + 𝐶) ≤ ((vol*‘𝐸) + (𝐶 + 𝐶)))
12543, 56, 55, 116, 124letrd 11132 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) ≤ ((vol*‘𝐸) + (𝐶 + 𝐶)))
12643, 55, 45, 125leadd1dd 11589 . . 3 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ≤ (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)))
12745recnd 11003 . . . . 5 (𝜑 → (𝐶 + 𝐶) ∈ ℂ)
128122, 127, 127addassd 10997 . . . 4 (𝜑 → (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)) = ((vol*‘𝐸) + ((𝐶 + 𝐶) + (𝐶 + 𝐶))))
129 2t2e4 12137 . . . . . . 7 (2 · 2) = 4
130129oveq1i 7285 . . . . . 6 ((2 · 2) · 𝐶) = (4 · 𝐶)
131 2cnd 12051 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
132131, 131, 78mulassd 10998 . . . . . . 7 (𝜑 → ((2 · 2) · 𝐶) = (2 · (2 · 𝐶)))
133782timesd 12216 . . . . . . . 8 (𝜑 → (2 · 𝐶) = (𝐶 + 𝐶))
134133oveq2d 7291 . . . . . . 7 (𝜑 → (2 · (2 · 𝐶)) = (2 · (𝐶 + 𝐶)))
1351272timesd 12216 . . . . . . 7 (𝜑 → (2 · (𝐶 + 𝐶)) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
136132, 134, 1353eqtrd 2782 . . . . . 6 (𝜑 → ((2 · 2) · 𝐶) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
137130, 136eqtr3id 2792 . . . . 5 (𝜑 → (4 · 𝐶) = ((𝐶 + 𝐶) + (𝐶 + 𝐶)))
138137oveq2d 7291 . . . 4 (𝜑 → ((vol*‘𝐸) + (4 · 𝐶)) = ((vol*‘𝐸) + ((𝐶 + 𝐶) + (𝐶 + 𝐶))))
139128, 138eqtr4d 2781 . . 3 (𝜑 → (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)) = ((vol*‘𝐸) + (4 · 𝐶)))
140126, 139breqtrd 5100 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
14116, 46, 50, 54, 140letrd 11132 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cdif 3884  cin 3886  wss 3887  𝒫 cpw 4533  cop 4567   cuni 4839   ciun 4924  Disj wdisj 5039   class class class wbr 5074   × cxp 5587  dom cdm 5589  ran crn 5590  cima 5592  ccom 5593  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Fincfn 8733  supcsup 9199  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  4c4 12030  +crp 12730  (,)cioo 13079  [,]cicc 13082  ...cfz 13239  seqcseq 13721  abscabs 14945  Σcsu 15397  vol*covol 24626  volcvol 24627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629
This theorem is referenced by:  uniioombllem6  24752
  Copyright terms: Public domain W3C validator