Step | Hyp | Ref
| Expression |
1 | | inss1 4056 |
. . . . 5
⊢ (𝐸 ∩ 𝐴) ⊆ 𝐸 |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐸 ∩ 𝐴) ⊆ 𝐸) |
3 | | uniioombl.s |
. . . . 5
⊢ (𝜑 → 𝐸 ⊆ ∪ ran
((,) ∘ 𝐺)) |
4 | | uniioombl.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
5 | 4 | uniiccdif 23743 |
. . . . . . 7
⊢ (𝜑 → (∪ ran ((,) ∘ 𝐺) ⊆ ∪ ran
([,] ∘ 𝐺) ∧
(vol*‘(∪ ran ([,] ∘ 𝐺) ∖ ∪ ran
((,) ∘ 𝐺))) =
0)) |
6 | 5 | simpld 490 |
. . . . . 6
⊢ (𝜑 → ∪ ran ((,) ∘ 𝐺) ⊆ ∪ ran
([,] ∘ 𝐺)) |
7 | | ovolficcss 23634 |
. . . . . . 7
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ∪ ran ([,] ∘
𝐺) ⊆
ℝ) |
8 | 4, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → ∪ ran ([,] ∘ 𝐺) ⊆ ℝ) |
9 | 6, 8 | sstrd 3836 |
. . . . 5
⊢ (𝜑 → ∪ ran ((,) ∘ 𝐺) ⊆ ℝ) |
10 | 3, 9 | sstrd 3836 |
. . . 4
⊢ (𝜑 → 𝐸 ⊆ ℝ) |
11 | | uniioombl.e |
. . . 4
⊢ (𝜑 → (vol*‘𝐸) ∈
ℝ) |
12 | | ovolsscl 23651 |
. . . 4
⊢ (((𝐸 ∩ 𝐴) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) →
(vol*‘(𝐸 ∩ 𝐴)) ∈
ℝ) |
13 | 2, 10, 11, 12 | syl3anc 1496 |
. . 3
⊢ (𝜑 → (vol*‘(𝐸 ∩ 𝐴)) ∈ ℝ) |
14 | | difssd 3964 |
. . . 4
⊢ (𝜑 → (𝐸 ∖ 𝐴) ⊆ 𝐸) |
15 | | ovolsscl 23651 |
. . . 4
⊢ (((𝐸 ∖ 𝐴) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) →
(vol*‘(𝐸 ∖
𝐴)) ∈
ℝ) |
16 | 14, 10, 11, 15 | syl3anc 1496 |
. . 3
⊢ (𝜑 → (vol*‘(𝐸 ∖ 𝐴)) ∈ ℝ) |
17 | 13, 16 | readdcld 10385 |
. 2
⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐴)) + (vol*‘(𝐸 ∖ 𝐴))) ∈ ℝ) |
18 | | inss1 4056 |
. . . . . 6
⊢ (𝐾 ∩ 𝐴) ⊆ 𝐾 |
19 | 18 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐾 ∩ 𝐴) ⊆ 𝐾) |
20 | | uniioombl.k |
. . . . . . . 8
⊢ 𝐾 = ∪
(((,) ∘ 𝐺) “
(1...𝑀)) |
21 | | imassrn 5717 |
. . . . . . . . 9
⊢ (((,)
∘ 𝐺) “
(1...𝑀)) ⊆ ran ((,)
∘ 𝐺) |
22 | 21 | unissi 4682 |
. . . . . . . 8
⊢ ∪ (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ∪ ran
((,) ∘ 𝐺) |
23 | 20, 22 | eqsstri 3859 |
. . . . . . 7
⊢ 𝐾 ⊆ ∪ ran ((,) ∘ 𝐺) |
24 | 23 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐾 ⊆ ∪ ran
((,) ∘ 𝐺)) |
25 | 24, 9 | sstrd 3836 |
. . . . 5
⊢ (𝜑 → 𝐾 ⊆ ℝ) |
26 | | uniioombl.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
27 | | uniioombl.2 |
. . . . . . . 8
⊢ (𝜑 → Disj 𝑥 ∈ ℕ
((,)‘(𝐹‘𝑥))) |
28 | | uniioombl.3 |
. . . . . . . 8
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
29 | | uniioombl.a |
. . . . . . . 8
⊢ 𝐴 = ∪
ran ((,) ∘ 𝐹) |
30 | | uniioombl.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
31 | | uniioombl.t |
. . . . . . . 8
⊢ 𝑇 = seq1( + , ((abs ∘
− ) ∘ 𝐺)) |
32 | | uniioombl.v |
. . . . . . . 8
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤
((vol*‘𝐸) + 𝐶)) |
33 | 26, 27, 28, 29, 11, 30, 4, 3, 31, 32 | uniioombllem1 23746 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈
ℝ) |
34 | | ssid 3847 |
. . . . . . . 8
⊢ ∪ ran ((,) ∘ 𝐺) ⊆ ∪ ran
((,) ∘ 𝐺) |
35 | 31 | ovollb 23644 |
. . . . . . . 8
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ∪ ran ((,) ∘
𝐺) ⊆ ∪ ran ((,) ∘ 𝐺)) → (vol*‘∪ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, <
)) |
36 | 4, 34, 35 | sylancl 582 |
. . . . . . 7
⊢ (𝜑 → (vol*‘∪ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, <
)) |
37 | | ovollecl 23648 |
. . . . . . 7
⊢ ((∪ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < )
∈ ℝ ∧ (vol*‘∪ ran ((,) ∘
𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
→ (vol*‘∪ ran ((,) ∘ 𝐺)) ∈
ℝ) |
38 | 9, 33, 36, 37 | syl3anc 1496 |
. . . . . 6
⊢ (𝜑 → (vol*‘∪ ran ((,) ∘ 𝐺)) ∈ ℝ) |
39 | | ovolsscl 23651 |
. . . . . 6
⊢ ((𝐾 ⊆ ∪ ran ((,) ∘ 𝐺) ∧ ∪ ran
((,) ∘ 𝐺) ⊆
ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝐺)) ∈ ℝ) →
(vol*‘𝐾) ∈
ℝ) |
40 | 24, 9, 38, 39 | syl3anc 1496 |
. . . . 5
⊢ (𝜑 → (vol*‘𝐾) ∈
ℝ) |
41 | | ovolsscl 23651 |
. . . . 5
⊢ (((𝐾 ∩ 𝐴) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) →
(vol*‘(𝐾 ∩ 𝐴)) ∈
ℝ) |
42 | 19, 25, 40, 41 | syl3anc 1496 |
. . . 4
⊢ (𝜑 → (vol*‘(𝐾 ∩ 𝐴)) ∈ ℝ) |
43 | | difssd 3964 |
. . . . 5
⊢ (𝜑 → (𝐾 ∖ 𝐴) ⊆ 𝐾) |
44 | | ovolsscl 23651 |
. . . . 5
⊢ (((𝐾 ∖ 𝐴) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) →
(vol*‘(𝐾 ∖
𝐴)) ∈
ℝ) |
45 | 43, 25, 40, 44 | syl3anc 1496 |
. . . 4
⊢ (𝜑 → (vol*‘(𝐾 ∖ 𝐴)) ∈ ℝ) |
46 | 42, 45 | readdcld 10385 |
. . 3
⊢ (𝜑 → ((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) ∈ ℝ) |
47 | 30 | rpred 12155 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) |
48 | 47, 47 | readdcld 10385 |
. . 3
⊢ (𝜑 → (𝐶 + 𝐶) ∈ ℝ) |
49 | 46, 48 | readdcld 10385 |
. 2
⊢ (𝜑 → (((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) + (𝐶 + 𝐶)) ∈ ℝ) |
50 | | 4re 11435 |
. . . 4
⊢ 4 ∈
ℝ |
51 | | remulcl 10336 |
. . . 4
⊢ ((4
∈ ℝ ∧ 𝐶
∈ ℝ) → (4 · 𝐶) ∈ ℝ) |
52 | 50, 47, 51 | sylancr 583 |
. . 3
⊢ (𝜑 → (4 · 𝐶) ∈
ℝ) |
53 | 11, 52 | readdcld 10385 |
. 2
⊢ (𝜑 → ((vol*‘𝐸) + (4 · 𝐶)) ∈
ℝ) |
54 | | uniioombl.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
55 | | uniioombl.m2 |
. . . 4
⊢ (𝜑 → (abs‘((𝑇‘𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) |
56 | 26, 27, 28, 29, 11, 30, 4, 3, 31, 32, 54, 55, 20 | uniioombllem3 23750 |
. . 3
⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐴)) + (vol*‘(𝐸 ∖ 𝐴))) < (((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) + (𝐶 + 𝐶))) |
57 | 17, 49, 56 | ltled 10503 |
. 2
⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐴)) + (vol*‘(𝐸 ∖ 𝐴))) ≤ (((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) + (𝐶 + 𝐶))) |
58 | 11, 48 | readdcld 10385 |
. . . 4
⊢ (𝜑 → ((vol*‘𝐸) + (𝐶 + 𝐶)) ∈ ℝ) |
59 | 40, 47 | readdcld 10385 |
. . . . 5
⊢ (𝜑 → ((vol*‘𝐾) + 𝐶) ∈ ℝ) |
60 | | inss1 4056 |
. . . . . . . . . 10
⊢ (𝐾 ∩ 𝐿) ⊆ 𝐾 |
61 | 60 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ∩ 𝐿) ⊆ 𝐾) |
62 | | ovolsscl 23651 |
. . . . . . . . 9
⊢ (((𝐾 ∩ 𝐿) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) →
(vol*‘(𝐾 ∩ 𝐿)) ∈
ℝ) |
63 | 61, 25, 40, 62 | syl3anc 1496 |
. . . . . . . 8
⊢ (𝜑 → (vol*‘(𝐾 ∩ 𝐿)) ∈ ℝ) |
64 | 63, 47 | readdcld 10385 |
. . . . . . 7
⊢ (𝜑 → ((vol*‘(𝐾 ∩ 𝐿)) + 𝐶) ∈ ℝ) |
65 | | difssd 3964 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∖ 𝐿) ⊆ 𝐾) |
66 | | ovolsscl 23651 |
. . . . . . . 8
⊢ (((𝐾 ∖ 𝐿) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) →
(vol*‘(𝐾 ∖
𝐿)) ∈
ℝ) |
67 | 65, 25, 40, 66 | syl3anc 1496 |
. . . . . . 7
⊢ (𝜑 → (vol*‘(𝐾 ∖ 𝐿)) ∈ ℝ) |
68 | | uniioombl.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
69 | | uniioombl.n2 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹‘𝑖)) ∩ ((,)‘(𝐺‘𝑗)))) − (vol*‘(((,)‘(𝐺‘𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀)) |
70 | | uniioombl.l |
. . . . . . . 8
⊢ 𝐿 = ∪
(((,) ∘ 𝐹) “
(1...𝑁)) |
71 | 26, 27, 28, 29, 11, 30, 4, 3, 31, 32, 54, 55, 20, 68, 69, 70 | uniioombllem4 23751 |
. . . . . . 7
⊢ (𝜑 → (vol*‘(𝐾 ∩ 𝐴)) ≤ ((vol*‘(𝐾 ∩ 𝐿)) + 𝐶)) |
72 | | imassrn 5717 |
. . . . . . . . . . 11
⊢ (((,)
∘ 𝐹) “
(1...𝑁)) ⊆ ran ((,)
∘ 𝐹) |
73 | 72 | unissi 4682 |
. . . . . . . . . 10
⊢ ∪ (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ∪ ran
((,) ∘ 𝐹) |
74 | 73, 70, 29 | 3sstr4i 3868 |
. . . . . . . . 9
⊢ 𝐿 ⊆ 𝐴 |
75 | | sscon 3970 |
. . . . . . . . 9
⊢ (𝐿 ⊆ 𝐴 → (𝐾 ∖ 𝐴) ⊆ (𝐾 ∖ 𝐿)) |
76 | 74, 75 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∖ 𝐴) ⊆ (𝐾 ∖ 𝐿)) |
77 | 65, 25 | sstrd 3836 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∖ 𝐿) ⊆ ℝ) |
78 | | ovolss 23650 |
. . . . . . . 8
⊢ (((𝐾 ∖ 𝐴) ⊆ (𝐾 ∖ 𝐿) ∧ (𝐾 ∖ 𝐿) ⊆ ℝ) → (vol*‘(𝐾 ∖ 𝐴)) ≤ (vol*‘(𝐾 ∖ 𝐿))) |
79 | 76, 77, 78 | syl2anc 581 |
. . . . . . 7
⊢ (𝜑 → (vol*‘(𝐾 ∖ 𝐴)) ≤ (vol*‘(𝐾 ∖ 𝐿))) |
80 | 42, 45, 64, 67, 71, 79 | le2addd 10970 |
. . . . . 6
⊢ (𝜑 → ((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) ≤ (((vol*‘(𝐾 ∩ 𝐿)) + 𝐶) + (vol*‘(𝐾 ∖ 𝐿)))) |
81 | 63 | recnd 10384 |
. . . . . . . 8
⊢ (𝜑 → (vol*‘(𝐾 ∩ 𝐿)) ∈ ℂ) |
82 | 47 | recnd 10384 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℂ) |
83 | 67 | recnd 10384 |
. . . . . . . 8
⊢ (𝜑 → (vol*‘(𝐾 ∖ 𝐿)) ∈ ℂ) |
84 | 81, 82, 83 | add32d 10581 |
. . . . . . 7
⊢ (𝜑 → (((vol*‘(𝐾 ∩ 𝐿)) + 𝐶) + (vol*‘(𝐾 ∖ 𝐿))) = (((vol*‘(𝐾 ∩ 𝐿)) + (vol*‘(𝐾 ∖ 𝐿))) + 𝐶)) |
85 | | ioof 12559 |
. . . . . . . . . . . . 13
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
86 | | inss2 4057 |
. . . . . . . . . . . . . . 15
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
87 | | rexpssxrxp 10400 |
. . . . . . . . . . . . . . 15
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
88 | 86, 87 | sstri 3835 |
. . . . . . . . . . . . . 14
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ* ×
ℝ*) |
89 | | fss 6290 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ))
⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
90 | 26, 88, 89 | sylancl 582 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
91 | | fco 6294 |
. . . . . . . . . . . . 13
⊢
(((,):(ℝ* × ℝ*)⟶𝒫
ℝ ∧ 𝐹:ℕ⟶(ℝ* ×
ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫
ℝ) |
92 | 85, 90, 91 | sylancr 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫
ℝ) |
93 | | ffun 6280 |
. . . . . . . . . . . 12
⊢ (((,)
∘ 𝐹):ℕ⟶𝒫 ℝ →
Fun ((,) ∘ 𝐹)) |
94 | | funiunfv 6760 |
. . . . . . . . . . . 12
⊢ (Fun ((,)
∘ 𝐹) → ∪ 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = ∪ (((,)
∘ 𝐹) “
(1...𝑁))) |
95 | 92, 93, 94 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = ∪ (((,)
∘ 𝐹) “
(1...𝑁))) |
96 | 95, 70 | syl6eqr 2878 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) = 𝐿) |
97 | | fzfid 13066 |
. . . . . . . . . . 11
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
98 | | elfznn 12662 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ) |
99 | | fvco3 6521 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹‘𝑛))) |
100 | 26, 98, 99 | syl2an 591 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹‘𝑛))) |
101 | | ffvelrn 6605 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
102 | 26, 98, 101 | syl2an 591 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝐹‘𝑛) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
103 | 86, 102 | sseldi 3824 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝐹‘𝑛) ∈ (ℝ ×
ℝ)) |
104 | | 1st2nd2 7466 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑛) ∈ (ℝ × ℝ) →
(𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
106 | 105 | fveq2d 6436 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((,)‘(𝐹‘𝑛)) = ((,)‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉)) |
107 | | df-ov 6907 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) = ((,)‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉) |
108 | 106, 107 | syl6eqr 2878 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((,)‘(𝐹‘𝑛)) = ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) |
109 | 100, 108 | eqtrd 2860 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) |
110 | | ioombl 23730 |
. . . . . . . . . . . . 13
⊢
((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) ∈ dom vol |
111 | 109, 110 | syl6eqel 2913 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol) |
112 | 111 | ralrimiva 3174 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol) |
113 | | finiunmbl 23709 |
. . . . . . . . . . 11
⊢
(((1...𝑁) ∈ Fin
∧ ∀𝑛 ∈
(1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol) → ∪ 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol) |
114 | 97, 112, 113 | syl2anc 581 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑛 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑛) ∈ dom vol) |
115 | 96, 114 | eqeltrrd 2906 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ dom vol) |
116 | | mblsplit 23697 |
. . . . . . . . 9
⊢ ((𝐿 ∈ dom vol ∧ 𝐾 ⊆ ℝ ∧
(vol*‘𝐾) ∈
ℝ) → (vol*‘𝐾) = ((vol*‘(𝐾 ∩ 𝐿)) + (vol*‘(𝐾 ∖ 𝐿)))) |
117 | 115, 25, 40, 116 | syl3anc 1496 |
. . . . . . . 8
⊢ (𝜑 → (vol*‘𝐾) = ((vol*‘(𝐾 ∩ 𝐿)) + (vol*‘(𝐾 ∖ 𝐿)))) |
118 | 117 | oveq1d 6919 |
. . . . . . 7
⊢ (𝜑 → ((vol*‘𝐾) + 𝐶) = (((vol*‘(𝐾 ∩ 𝐿)) + (vol*‘(𝐾 ∖ 𝐿))) + 𝐶)) |
119 | 84, 118 | eqtr4d 2863 |
. . . . . 6
⊢ (𝜑 → (((vol*‘(𝐾 ∩ 𝐿)) + 𝐶) + (vol*‘(𝐾 ∖ 𝐿))) = ((vol*‘𝐾) + 𝐶)) |
120 | 80, 119 | breqtrd 4898 |
. . . . 5
⊢ (𝜑 → ((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) ≤ ((vol*‘𝐾) + 𝐶)) |
121 | 11, 47 | readdcld 10385 |
. . . . . . 7
⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
122 | 31 | ovollb 23644 |
. . . . . . . . 9
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝐾 ⊆ ∪ ran
((,) ∘ 𝐺)) →
(vol*‘𝐾) ≤ sup(ran
𝑇, ℝ*,
< )) |
123 | 4, 23, 122 | sylancl 582 |
. . . . . . . 8
⊢ (𝜑 → (vol*‘𝐾) ≤ sup(ran 𝑇, ℝ*, <
)) |
124 | 40, 33, 121, 123, 32 | letrd 10512 |
. . . . . . 7
⊢ (𝜑 → (vol*‘𝐾) ≤ ((vol*‘𝐸) + 𝐶)) |
125 | 40, 121, 47, 124 | leadd1dd 10965 |
. . . . . 6
⊢ (𝜑 → ((vol*‘𝐾) + 𝐶) ≤ (((vol*‘𝐸) + 𝐶) + 𝐶)) |
126 | 11 | recnd 10384 |
. . . . . . 7
⊢ (𝜑 → (vol*‘𝐸) ∈
ℂ) |
127 | 126, 82, 82 | addassd 10378 |
. . . . . 6
⊢ (𝜑 → (((vol*‘𝐸) + 𝐶) + 𝐶) = ((vol*‘𝐸) + (𝐶 + 𝐶))) |
128 | 125, 127 | breqtrd 4898 |
. . . . 5
⊢ (𝜑 → ((vol*‘𝐾) + 𝐶) ≤ ((vol*‘𝐸) + (𝐶 + 𝐶))) |
129 | 46, 59, 58, 120, 128 | letrd 10512 |
. . . 4
⊢ (𝜑 → ((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) ≤ ((vol*‘𝐸) + (𝐶 + 𝐶))) |
130 | 46, 58, 48, 129 | leadd1dd 10965 |
. . 3
⊢ (𝜑 → (((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) + (𝐶 + 𝐶)) ≤ (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶))) |
131 | 48 | recnd 10384 |
. . . . 5
⊢ (𝜑 → (𝐶 + 𝐶) ∈ ℂ) |
132 | 126, 131,
131 | addassd 10378 |
. . . 4
⊢ (𝜑 → (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)) = ((vol*‘𝐸) + ((𝐶 + 𝐶) + (𝐶 + 𝐶)))) |
133 | | 2t2e4 11521 |
. . . . . . 7
⊢ (2
· 2) = 4 |
134 | 133 | oveq1i 6914 |
. . . . . 6
⊢ ((2
· 2) · 𝐶) =
(4 · 𝐶) |
135 | | 2cnd 11428 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℂ) |
136 | 135, 135,
82 | mulassd 10379 |
. . . . . . 7
⊢ (𝜑 → ((2 · 2) ·
𝐶) = (2 · (2
· 𝐶))) |
137 | 82 | 2timesd 11600 |
. . . . . . . 8
⊢ (𝜑 → (2 · 𝐶) = (𝐶 + 𝐶)) |
138 | 137 | oveq2d 6920 |
. . . . . . 7
⊢ (𝜑 → (2 · (2 ·
𝐶)) = (2 · (𝐶 + 𝐶))) |
139 | 131 | 2timesd 11600 |
. . . . . . 7
⊢ (𝜑 → (2 · (𝐶 + 𝐶)) = ((𝐶 + 𝐶) + (𝐶 + 𝐶))) |
140 | 136, 138,
139 | 3eqtrd 2864 |
. . . . . 6
⊢ (𝜑 → ((2 · 2) ·
𝐶) = ((𝐶 + 𝐶) + (𝐶 + 𝐶))) |
141 | 134, 140 | syl5eqr 2874 |
. . . . 5
⊢ (𝜑 → (4 · 𝐶) = ((𝐶 + 𝐶) + (𝐶 + 𝐶))) |
142 | 141 | oveq2d 6920 |
. . . 4
⊢ (𝜑 → ((vol*‘𝐸) + (4 · 𝐶)) = ((vol*‘𝐸) + ((𝐶 + 𝐶) + (𝐶 + 𝐶)))) |
143 | 132, 142 | eqtr4d 2863 |
. . 3
⊢ (𝜑 → (((vol*‘𝐸) + (𝐶 + 𝐶)) + (𝐶 + 𝐶)) = ((vol*‘𝐸) + (4 · 𝐶))) |
144 | 130, 143 | breqtrd 4898 |
. 2
⊢ (𝜑 → (((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) + (𝐶 + 𝐶)) ≤ ((vol*‘𝐸) + (4 · 𝐶))) |
145 | 17, 49, 53, 57, 144 | letrd 10512 |
1
⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐴)) + (vol*‘(𝐸 ∖ 𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶))) |