Proof of Theorem kur14lem6
| Step | Hyp | Ref
| Expression |
| 1 | | kur14lem.j |
. . . . 5
⊢ 𝐽 ∈ Top |
| 2 | | kur14lem.x |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
| 3 | | kur14lem.k |
. . . . . 6
⊢ 𝐾 = (cls‘𝐽) |
| 4 | | kur14lem.i |
. . . . . 6
⊢ 𝐼 = (int‘𝐽) |
| 5 | | kur14lem.b |
. . . . . . 7
⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) |
| 6 | | difss 4107 |
. . . . . . 7
⊢ (𝑋 ∖ (𝐾‘𝐴)) ⊆ 𝑋 |
| 7 | 5, 6 | eqsstri 4001 |
. . . . . 6
⊢ 𝐵 ⊆ 𝑋 |
| 8 | 1, 2, 3, 4, 7 | kur14lem3 35197 |
. . . . 5
⊢ (𝐾‘𝐵) ⊆ 𝑋 |
| 9 | 4 | fveq1i 6866 |
. . . . . 6
⊢ (𝐼‘(𝐾‘𝐵)) = ((int‘𝐽)‘(𝐾‘𝐵)) |
| 10 | 2 | ntrss2 22950 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝐾‘𝐵) ⊆ 𝑋) → ((int‘𝐽)‘(𝐾‘𝐵)) ⊆ (𝐾‘𝐵)) |
| 11 | 1, 8, 10 | mp2an 692 |
. . . . . 6
⊢
((int‘𝐽)‘(𝐾‘𝐵)) ⊆ (𝐾‘𝐵) |
| 12 | 9, 11 | eqsstri 4001 |
. . . . 5
⊢ (𝐼‘(𝐾‘𝐵)) ⊆ (𝐾‘𝐵) |
| 13 | 2 | clsss 22947 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝐾‘𝐵) ⊆ 𝑋 ∧ (𝐼‘(𝐾‘𝐵)) ⊆ (𝐾‘𝐵)) → ((cls‘𝐽)‘(𝐼‘(𝐾‘𝐵))) ⊆ ((cls‘𝐽)‘(𝐾‘𝐵))) |
| 14 | 1, 8, 12, 13 | mp3an 1463 |
. . . 4
⊢
((cls‘𝐽)‘(𝐼‘(𝐾‘𝐵))) ⊆ ((cls‘𝐽)‘(𝐾‘𝐵)) |
| 15 | 3 | fveq1i 6866 |
. . . 4
⊢ (𝐾‘(𝐼‘(𝐾‘𝐵))) = ((cls‘𝐽)‘(𝐼‘(𝐾‘𝐵))) |
| 16 | 3 | fveq1i 6866 |
. . . 4
⊢ (𝐾‘(𝐾‘𝐵)) = ((cls‘𝐽)‘(𝐾‘𝐵)) |
| 17 | 14, 15, 16 | 3sstr4i 4006 |
. . 3
⊢ (𝐾‘(𝐼‘(𝐾‘𝐵))) ⊆ (𝐾‘(𝐾‘𝐵)) |
| 18 | 1, 2, 3, 4, 7 | kur14lem5 35199 |
. . 3
⊢ (𝐾‘(𝐾‘𝐵)) = (𝐾‘𝐵) |
| 19 | 17, 18 | sseqtri 4003 |
. 2
⊢ (𝐾‘(𝐼‘(𝐾‘𝐵))) ⊆ (𝐾‘𝐵) |
| 20 | 1, 2, 3, 4, 8 | kur14lem2 35196 |
. . . . 5
⊢ (𝐼‘(𝐾‘𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐵)))) |
| 21 | | difss 4107 |
. . . . 5
⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐵)))) ⊆ 𝑋 |
| 22 | 20, 21 | eqsstri 4001 |
. . . 4
⊢ (𝐼‘(𝐾‘𝐵)) ⊆ 𝑋 |
| 23 | | kur14lem.a |
. . . . . . . . 9
⊢ 𝐴 ⊆ 𝑋 |
| 24 | 1, 2, 3, 4, 23 | kur14lem3 35197 |
. . . . . . . 8
⊢ (𝐾‘𝐴) ⊆ 𝑋 |
| 25 | 5 | fveq2i 6868 |
. . . . . . . . . . 11
⊢ (𝐾‘𝐵) = (𝐾‘(𝑋 ∖ (𝐾‘𝐴))) |
| 26 | 25 | difeq2i 4094 |
. . . . . . . . . 10
⊢ (𝑋 ∖ (𝐾‘𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐴)))) |
| 27 | 1, 2, 3, 4, 24 | kur14lem2 35196 |
. . . . . . . . . 10
⊢ (𝐼‘(𝐾‘𝐴)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐴)))) |
| 28 | 4 | fveq1i 6866 |
. . . . . . . . . 10
⊢ (𝐼‘(𝐾‘𝐴)) = ((int‘𝐽)‘(𝐾‘𝐴)) |
| 29 | 26, 27, 28 | 3eqtr2i 2759 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐾‘𝐵)) = ((int‘𝐽)‘(𝐾‘𝐴)) |
| 30 | 2 | ntrss2 22950 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝐾‘𝐴) ⊆ 𝑋) → ((int‘𝐽)‘(𝐾‘𝐴)) ⊆ (𝐾‘𝐴)) |
| 31 | 1, 24, 30 | mp2an 692 |
. . . . . . . . 9
⊢
((int‘𝐽)‘(𝐾‘𝐴)) ⊆ (𝐾‘𝐴) |
| 32 | 29, 31 | eqsstri 4001 |
. . . . . . . 8
⊢ (𝑋 ∖ (𝐾‘𝐵)) ⊆ (𝐾‘𝐴) |
| 33 | 2 | clsss 22947 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝐾‘𝐴) ⊆ 𝑋 ∧ (𝑋 ∖ (𝐾‘𝐵)) ⊆ (𝐾‘𝐴)) → ((cls‘𝐽)‘(𝑋 ∖ (𝐾‘𝐵))) ⊆ ((cls‘𝐽)‘(𝐾‘𝐴))) |
| 34 | 1, 24, 32, 33 | mp3an 1463 |
. . . . . . 7
⊢
((cls‘𝐽)‘(𝑋 ∖ (𝐾‘𝐵))) ⊆ ((cls‘𝐽)‘(𝐾‘𝐴)) |
| 35 | 3 | fveq1i 6866 |
. . . . . . 7
⊢ (𝐾‘(𝑋 ∖ (𝐾‘𝐵))) = ((cls‘𝐽)‘(𝑋 ∖ (𝐾‘𝐵))) |
| 36 | 1, 2, 3, 4, 23 | kur14lem5 35199 |
. . . . . . . 8
⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) |
| 37 | 3 | fveq1i 6866 |
. . . . . . . 8
⊢ (𝐾‘(𝐾‘𝐴)) = ((cls‘𝐽)‘(𝐾‘𝐴)) |
| 38 | 36, 37 | eqtr3i 2755 |
. . . . . . 7
⊢ (𝐾‘𝐴) = ((cls‘𝐽)‘(𝐾‘𝐴)) |
| 39 | 34, 35, 38 | 3sstr4i 4006 |
. . . . . 6
⊢ (𝐾‘(𝑋 ∖ (𝐾‘𝐵))) ⊆ (𝐾‘𝐴) |
| 40 | | sscon 4114 |
. . . . . 6
⊢ ((𝐾‘(𝑋 ∖ (𝐾‘𝐵))) ⊆ (𝐾‘𝐴) → (𝑋 ∖ (𝐾‘𝐴)) ⊆ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐵))))) |
| 41 | 39, 40 | ax-mp 5 |
. . . . 5
⊢ (𝑋 ∖ (𝐾‘𝐴)) ⊆ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾‘𝐵)))) |
| 42 | 41, 5, 20 | 3sstr4i 4006 |
. . . 4
⊢ 𝐵 ⊆ (𝐼‘(𝐾‘𝐵)) |
| 43 | 2 | clsss 22947 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝐼‘(𝐾‘𝐵)) ⊆ 𝑋 ∧ 𝐵 ⊆ (𝐼‘(𝐾‘𝐵))) → ((cls‘𝐽)‘𝐵) ⊆ ((cls‘𝐽)‘(𝐼‘(𝐾‘𝐵)))) |
| 44 | 1, 22, 42, 43 | mp3an 1463 |
. . 3
⊢
((cls‘𝐽)‘𝐵) ⊆ ((cls‘𝐽)‘(𝐼‘(𝐾‘𝐵))) |
| 45 | 3 | fveq1i 6866 |
. . 3
⊢ (𝐾‘𝐵) = ((cls‘𝐽)‘𝐵) |
| 46 | 44, 45, 15 | 3sstr4i 4006 |
. 2
⊢ (𝐾‘𝐵) ⊆ (𝐾‘(𝐼‘(𝐾‘𝐵))) |
| 47 | 19, 46 | eqssi 3971 |
1
⊢ (𝐾‘(𝐼‘(𝐾‘𝐵))) = (𝐾‘𝐵) |