Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem6 Structured version   Visualization version   GIF version

Theorem kur14lem6 35200
Description: Lemma for kur14 35205. If 𝑘 is the complementation operator and 𝑘 is the closure operator, this expresses the identity 𝑘𝑐𝑘𝐴 = 𝑘𝑐𝑘𝑐𝑘𝑐𝑘𝐴 for any subset 𝐴 of the topological space. This is the key result that lets us cut down long enough sequences of 𝑐𝑘𝑐𝑘... that arise when applying closure and complement repeatedly to 𝐴, and explains why we end up with a number as large as 14, yet no larger. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = (𝑋 ∖ (𝐾𝐴))
Assertion
Ref Expression
kur14lem6 (𝐾‘(𝐼‘(𝐾𝐵))) = (𝐾𝐵)

Proof of Theorem kur14lem6
StepHypRef Expression
1 kur14lem.j . . . . 5 𝐽 ∈ Top
2 kur14lem.x . . . . . 6 𝑋 = 𝐽
3 kur14lem.k . . . . . 6 𝐾 = (cls‘𝐽)
4 kur14lem.i . . . . . 6 𝐼 = (int‘𝐽)
5 kur14lem.b . . . . . . 7 𝐵 = (𝑋 ∖ (𝐾𝐴))
6 difss 4107 . . . . . . 7 (𝑋 ∖ (𝐾𝐴)) ⊆ 𝑋
75, 6eqsstri 4001 . . . . . 6 𝐵𝑋
81, 2, 3, 4, 7kur14lem3 35197 . . . . 5 (𝐾𝐵) ⊆ 𝑋
94fveq1i 6866 . . . . . 6 (𝐼‘(𝐾𝐵)) = ((int‘𝐽)‘(𝐾𝐵))
102ntrss2 22950 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝐾𝐵) ⊆ 𝑋) → ((int‘𝐽)‘(𝐾𝐵)) ⊆ (𝐾𝐵))
111, 8, 10mp2an 692 . . . . . 6 ((int‘𝐽)‘(𝐾𝐵)) ⊆ (𝐾𝐵)
129, 11eqsstri 4001 . . . . 5 (𝐼‘(𝐾𝐵)) ⊆ (𝐾𝐵)
132clsss 22947 . . . . 5 ((𝐽 ∈ Top ∧ (𝐾𝐵) ⊆ 𝑋 ∧ (𝐼‘(𝐾𝐵)) ⊆ (𝐾𝐵)) → ((cls‘𝐽)‘(𝐼‘(𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐵)))
141, 8, 12, 13mp3an 1463 . . . 4 ((cls‘𝐽)‘(𝐼‘(𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐵))
153fveq1i 6866 . . . 4 (𝐾‘(𝐼‘(𝐾𝐵))) = ((cls‘𝐽)‘(𝐼‘(𝐾𝐵)))
163fveq1i 6866 . . . 4 (𝐾‘(𝐾𝐵)) = ((cls‘𝐽)‘(𝐾𝐵))
1714, 15, 163sstr4i 4006 . . 3 (𝐾‘(𝐼‘(𝐾𝐵))) ⊆ (𝐾‘(𝐾𝐵))
181, 2, 3, 4, 7kur14lem5 35199 . . 3 (𝐾‘(𝐾𝐵)) = (𝐾𝐵)
1917, 18sseqtri 4003 . 2 (𝐾‘(𝐼‘(𝐾𝐵))) ⊆ (𝐾𝐵)
201, 2, 3, 4, 8kur14lem2 35196 . . . . 5 (𝐼‘(𝐾𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵))))
21 difss 4107 . . . . 5 (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵)))) ⊆ 𝑋
2220, 21eqsstri 4001 . . . 4 (𝐼‘(𝐾𝐵)) ⊆ 𝑋
23 kur14lem.a . . . . . . . . 9 𝐴𝑋
241, 2, 3, 4, 23kur14lem3 35197 . . . . . . . 8 (𝐾𝐴) ⊆ 𝑋
255fveq2i 6868 . . . . . . . . . . 11 (𝐾𝐵) = (𝐾‘(𝑋 ∖ (𝐾𝐴)))
2625difeq2i 4094 . . . . . . . . . 10 (𝑋 ∖ (𝐾𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐴))))
271, 2, 3, 4, 24kur14lem2 35196 . . . . . . . . . 10 (𝐼‘(𝐾𝐴)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐴))))
284fveq1i 6866 . . . . . . . . . 10 (𝐼‘(𝐾𝐴)) = ((int‘𝐽)‘(𝐾𝐴))
2926, 27, 283eqtr2i 2759 . . . . . . . . 9 (𝑋 ∖ (𝐾𝐵)) = ((int‘𝐽)‘(𝐾𝐴))
302ntrss2 22950 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐾𝐴) ⊆ 𝑋) → ((int‘𝐽)‘(𝐾𝐴)) ⊆ (𝐾𝐴))
311, 24, 30mp2an 692 . . . . . . . . 9 ((int‘𝐽)‘(𝐾𝐴)) ⊆ (𝐾𝐴)
3229, 31eqsstri 4001 . . . . . . . 8 (𝑋 ∖ (𝐾𝐵)) ⊆ (𝐾𝐴)
332clsss 22947 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐾𝐴) ⊆ 𝑋 ∧ (𝑋 ∖ (𝐾𝐵)) ⊆ (𝐾𝐴)) → ((cls‘𝐽)‘(𝑋 ∖ (𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐴)))
341, 24, 32, 33mp3an 1463 . . . . . . 7 ((cls‘𝐽)‘(𝑋 ∖ (𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐴))
353fveq1i 6866 . . . . . . 7 (𝐾‘(𝑋 ∖ (𝐾𝐵))) = ((cls‘𝐽)‘(𝑋 ∖ (𝐾𝐵)))
361, 2, 3, 4, 23kur14lem5 35199 . . . . . . . 8 (𝐾‘(𝐾𝐴)) = (𝐾𝐴)
373fveq1i 6866 . . . . . . . 8 (𝐾‘(𝐾𝐴)) = ((cls‘𝐽)‘(𝐾𝐴))
3836, 37eqtr3i 2755 . . . . . . 7 (𝐾𝐴) = ((cls‘𝐽)‘(𝐾𝐴))
3934, 35, 383sstr4i 4006 . . . . . 6 (𝐾‘(𝑋 ∖ (𝐾𝐵))) ⊆ (𝐾𝐴)
40 sscon 4114 . . . . . 6 ((𝐾‘(𝑋 ∖ (𝐾𝐵))) ⊆ (𝐾𝐴) → (𝑋 ∖ (𝐾𝐴)) ⊆ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵)))))
4139, 40ax-mp 5 . . . . 5 (𝑋 ∖ (𝐾𝐴)) ⊆ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵))))
4241, 5, 203sstr4i 4006 . . . 4 𝐵 ⊆ (𝐼‘(𝐾𝐵))
432clsss 22947 . . . 4 ((𝐽 ∈ Top ∧ (𝐼‘(𝐾𝐵)) ⊆ 𝑋𝐵 ⊆ (𝐼‘(𝐾𝐵))) → ((cls‘𝐽)‘𝐵) ⊆ ((cls‘𝐽)‘(𝐼‘(𝐾𝐵))))
441, 22, 42, 43mp3an 1463 . . 3 ((cls‘𝐽)‘𝐵) ⊆ ((cls‘𝐽)‘(𝐼‘(𝐾𝐵)))
453fveq1i 6866 . . 3 (𝐾𝐵) = ((cls‘𝐽)‘𝐵)
4644, 45, 153sstr4i 4006 . 2 (𝐾𝐵) ⊆ (𝐾‘(𝐼‘(𝐾𝐵)))
4719, 46eqssi 3971 1 (𝐾‘(𝐼‘(𝐾𝐵))) = (𝐾𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cdif 3919  wss 3922   cuni 4879  cfv 6519  Topctop 22786  intcnt 22910  clsccl 22911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-top 22787  df-cld 22912  df-ntr 22913  df-cls 22914
This theorem is referenced by:  kur14lem7  35201
  Copyright terms: Public domain W3C validator