Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem6 Structured version   Visualization version   GIF version

Theorem kur14lem6 33201
Description: Lemma for kur14 33206. If 𝑘 is the complementation operator and 𝑘 is the closure operator, this expresses the identity 𝑘𝑐𝑘𝐴 = 𝑘𝑐𝑘𝑐𝑘𝑐𝑘𝐴 for any subset 𝐴 of the topological space. This is the key result that lets us cut down long enough sequences of 𝑐𝑘𝑐𝑘... that arise when applying closure and complement repeatedly to 𝐴, and explains why we end up with a number as large as 14, yet no larger. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = (𝑋 ∖ (𝐾𝐴))
Assertion
Ref Expression
kur14lem6 (𝐾‘(𝐼‘(𝐾𝐵))) = (𝐾𝐵)

Proof of Theorem kur14lem6
StepHypRef Expression
1 kur14lem.j . . . . 5 𝐽 ∈ Top
2 kur14lem.x . . . . . 6 𝑋 = 𝐽
3 kur14lem.k . . . . . 6 𝐾 = (cls‘𝐽)
4 kur14lem.i . . . . . 6 𝐼 = (int‘𝐽)
5 kur14lem.b . . . . . . 7 𝐵 = (𝑋 ∖ (𝐾𝐴))
6 difss 4069 . . . . . . 7 (𝑋 ∖ (𝐾𝐴)) ⊆ 𝑋
75, 6eqsstri 3957 . . . . . 6 𝐵𝑋
81, 2, 3, 4, 7kur14lem3 33198 . . . . 5 (𝐾𝐵) ⊆ 𝑋
94fveq1i 6793 . . . . . 6 (𝐼‘(𝐾𝐵)) = ((int‘𝐽)‘(𝐾𝐵))
102ntrss2 22236 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝐾𝐵) ⊆ 𝑋) → ((int‘𝐽)‘(𝐾𝐵)) ⊆ (𝐾𝐵))
111, 8, 10mp2an 688 . . . . . 6 ((int‘𝐽)‘(𝐾𝐵)) ⊆ (𝐾𝐵)
129, 11eqsstri 3957 . . . . 5 (𝐼‘(𝐾𝐵)) ⊆ (𝐾𝐵)
132clsss 22233 . . . . 5 ((𝐽 ∈ Top ∧ (𝐾𝐵) ⊆ 𝑋 ∧ (𝐼‘(𝐾𝐵)) ⊆ (𝐾𝐵)) → ((cls‘𝐽)‘(𝐼‘(𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐵)))
141, 8, 12, 13mp3an 1459 . . . 4 ((cls‘𝐽)‘(𝐼‘(𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐵))
153fveq1i 6793 . . . 4 (𝐾‘(𝐼‘(𝐾𝐵))) = ((cls‘𝐽)‘(𝐼‘(𝐾𝐵)))
163fveq1i 6793 . . . 4 (𝐾‘(𝐾𝐵)) = ((cls‘𝐽)‘(𝐾𝐵))
1714, 15, 163sstr4i 3966 . . 3 (𝐾‘(𝐼‘(𝐾𝐵))) ⊆ (𝐾‘(𝐾𝐵))
181, 2, 3, 4, 7kur14lem5 33200 . . 3 (𝐾‘(𝐾𝐵)) = (𝐾𝐵)
1917, 18sseqtri 3959 . 2 (𝐾‘(𝐼‘(𝐾𝐵))) ⊆ (𝐾𝐵)
201, 2, 3, 4, 8kur14lem2 33197 . . . . 5 (𝐼‘(𝐾𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵))))
21 difss 4069 . . . . 5 (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵)))) ⊆ 𝑋
2220, 21eqsstri 3957 . . . 4 (𝐼‘(𝐾𝐵)) ⊆ 𝑋
23 kur14lem.a . . . . . . . . 9 𝐴𝑋
241, 2, 3, 4, 23kur14lem3 33198 . . . . . . . 8 (𝐾𝐴) ⊆ 𝑋
255fveq2i 6795 . . . . . . . . . . 11 (𝐾𝐵) = (𝐾‘(𝑋 ∖ (𝐾𝐴)))
2625difeq2i 4057 . . . . . . . . . 10 (𝑋 ∖ (𝐾𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐴))))
271, 2, 3, 4, 24kur14lem2 33197 . . . . . . . . . 10 (𝐼‘(𝐾𝐴)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐴))))
284fveq1i 6793 . . . . . . . . . 10 (𝐼‘(𝐾𝐴)) = ((int‘𝐽)‘(𝐾𝐴))
2926, 27, 283eqtr2i 2767 . . . . . . . . 9 (𝑋 ∖ (𝐾𝐵)) = ((int‘𝐽)‘(𝐾𝐴))
302ntrss2 22236 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐾𝐴) ⊆ 𝑋) → ((int‘𝐽)‘(𝐾𝐴)) ⊆ (𝐾𝐴))
311, 24, 30mp2an 688 . . . . . . . . 9 ((int‘𝐽)‘(𝐾𝐴)) ⊆ (𝐾𝐴)
3229, 31eqsstri 3957 . . . . . . . 8 (𝑋 ∖ (𝐾𝐵)) ⊆ (𝐾𝐴)
332clsss 22233 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐾𝐴) ⊆ 𝑋 ∧ (𝑋 ∖ (𝐾𝐵)) ⊆ (𝐾𝐴)) → ((cls‘𝐽)‘(𝑋 ∖ (𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐴)))
341, 24, 32, 33mp3an 1459 . . . . . . 7 ((cls‘𝐽)‘(𝑋 ∖ (𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐴))
353fveq1i 6793 . . . . . . 7 (𝐾‘(𝑋 ∖ (𝐾𝐵))) = ((cls‘𝐽)‘(𝑋 ∖ (𝐾𝐵)))
361, 2, 3, 4, 23kur14lem5 33200 . . . . . . . 8 (𝐾‘(𝐾𝐴)) = (𝐾𝐴)
373fveq1i 6793 . . . . . . . 8 (𝐾‘(𝐾𝐴)) = ((cls‘𝐽)‘(𝐾𝐴))
3836, 37eqtr3i 2763 . . . . . . 7 (𝐾𝐴) = ((cls‘𝐽)‘(𝐾𝐴))
3934, 35, 383sstr4i 3966 . . . . . 6 (𝐾‘(𝑋 ∖ (𝐾𝐵))) ⊆ (𝐾𝐴)
40 sscon 4076 . . . . . 6 ((𝐾‘(𝑋 ∖ (𝐾𝐵))) ⊆ (𝐾𝐴) → (𝑋 ∖ (𝐾𝐴)) ⊆ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵)))))
4139, 40ax-mp 5 . . . . 5 (𝑋 ∖ (𝐾𝐴)) ⊆ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵))))
4241, 5, 203sstr4i 3966 . . . 4 𝐵 ⊆ (𝐼‘(𝐾𝐵))
432clsss 22233 . . . 4 ((𝐽 ∈ Top ∧ (𝐼‘(𝐾𝐵)) ⊆ 𝑋𝐵 ⊆ (𝐼‘(𝐾𝐵))) → ((cls‘𝐽)‘𝐵) ⊆ ((cls‘𝐽)‘(𝐼‘(𝐾𝐵))))
441, 22, 42, 43mp3an 1459 . . 3 ((cls‘𝐽)‘𝐵) ⊆ ((cls‘𝐽)‘(𝐼‘(𝐾𝐵)))
453fveq1i 6793 . . 3 (𝐾𝐵) = ((cls‘𝐽)‘𝐵)
4644, 45, 153sstr4i 3966 . 2 (𝐾𝐵) ⊆ (𝐾‘(𝐼‘(𝐾𝐵)))
4719, 46eqssi 3939 1 (𝐾‘(𝐼‘(𝐾𝐵))) = (𝐾𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2101  cdif 3886  wss 3889   cuni 4841  cfv 6447  Topctop 22070  intcnt 22196  clsccl 22197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-top 22071  df-cld 22198  df-ntr 22199  df-cls 22200
This theorem is referenced by:  kur14lem7  33202
  Copyright terms: Public domain W3C validator