Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > strlem2 | Structured version Visualization version GIF version |
Description: Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strlem2.1 | ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) |
Ref | Expression |
---|---|
strlem2 | ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . . . . 5 ⊢ (𝑥 = 𝐶 → (projℎ‘𝑥) = (projℎ‘𝐶)) | |
2 | 1 | fveq1d 6770 | . . . 4 ⊢ (𝑥 = 𝐶 → ((projℎ‘𝑥)‘𝑢) = ((projℎ‘𝐶)‘𝑢)) |
3 | 2 | fveq2d 6772 | . . 3 ⊢ (𝑥 = 𝐶 → (normℎ‘((projℎ‘𝑥)‘𝑢)) = (normℎ‘((projℎ‘𝐶)‘𝑢))) |
4 | 3 | oveq1d 7283 | . 2 ⊢ (𝑥 = 𝐶 → ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
5 | strlem2.1 | . 2 ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) | |
6 | ovex 7301 | . 2 ⊢ ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2) ∈ V | |
7 | 4, 5, 6 | fvmpt 6869 | 1 ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 2c2 12011 ↑cexp 13763 normℎcno 29264 Cℋ cch 29270 projℎcpjh 29278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 |
This theorem is referenced by: strlem3a 30593 strlem4 30595 strlem5 30596 jplem2 30610 |
Copyright terms: Public domain | W3C validator |