| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > strlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| strlem2.1 | ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) |
| Ref | Expression |
|---|---|
| strlem2 | ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . . 5 ⊢ (𝑥 = 𝐶 → (projℎ‘𝑥) = (projℎ‘𝐶)) | |
| 2 | 1 | fveq1d 6828 | . . . 4 ⊢ (𝑥 = 𝐶 → ((projℎ‘𝑥)‘𝑢) = ((projℎ‘𝐶)‘𝑢)) |
| 3 | 2 | fveq2d 6830 | . . 3 ⊢ (𝑥 = 𝐶 → (normℎ‘((projℎ‘𝑥)‘𝑢)) = (normℎ‘((projℎ‘𝐶)‘𝑢))) |
| 4 | 3 | oveq1d 7368 | . 2 ⊢ (𝑥 = 𝐶 → ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
| 5 | strlem2.1 | . 2 ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) | |
| 6 | ovex 7386 | . 2 ⊢ ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6934 | 1 ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 2c2 12201 ↑cexp 13986 normℎcno 30885 Cℋ cch 30891 projℎcpjh 30899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: strlem3a 32214 strlem4 32216 strlem5 32217 jplem2 32231 |
| Copyright terms: Public domain | W3C validator |