| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > strlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| strlem2.1 | ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) |
| Ref | Expression |
|---|---|
| strlem2 | ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6886 | . . . . 5 ⊢ (𝑥 = 𝐶 → (projℎ‘𝑥) = (projℎ‘𝐶)) | |
| 2 | 1 | fveq1d 6888 | . . . 4 ⊢ (𝑥 = 𝐶 → ((projℎ‘𝑥)‘𝑢) = ((projℎ‘𝐶)‘𝑢)) |
| 3 | 2 | fveq2d 6890 | . . 3 ⊢ (𝑥 = 𝐶 → (normℎ‘((projℎ‘𝑥)‘𝑢)) = (normℎ‘((projℎ‘𝐶)‘𝑢))) |
| 4 | 3 | oveq1d 7428 | . 2 ⊢ (𝑥 = 𝐶 → ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
| 5 | strlem2.1 | . 2 ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) | |
| 6 | ovex 7446 | . 2 ⊢ ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6996 | 1 ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 2c2 12303 ↑cexp 14084 normℎcno 30870 Cℋ cch 30876 projℎcpjh 30884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 |
| This theorem is referenced by: strlem3a 32199 strlem4 32201 strlem5 32202 jplem2 32216 |
| Copyright terms: Public domain | W3C validator |