HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem2 Structured version   Visualization version   GIF version

Theorem strlem2 32285
Description: Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
strlem2.1 𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))
Assertion
Ref Expression
strlem2 (𝐶C → (𝑆𝐶) = ((norm‘((proj𝐶)‘𝑢))↑2))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑢
Allowed substitution hints:   𝐶(𝑢)   𝑆(𝑥,𝑢)

Proof of Theorem strlem2
StepHypRef Expression
1 fveq2 6922 . . . . 5 (𝑥 = 𝐶 → (proj𝑥) = (proj𝐶))
21fveq1d 6924 . . . 4 (𝑥 = 𝐶 → ((proj𝑥)‘𝑢) = ((proj𝐶)‘𝑢))
32fveq2d 6926 . . 3 (𝑥 = 𝐶 → (norm‘((proj𝑥)‘𝑢)) = (norm‘((proj𝐶)‘𝑢)))
43oveq1d 7465 . 2 (𝑥 = 𝐶 → ((norm‘((proj𝑥)‘𝑢))↑2) = ((norm‘((proj𝐶)‘𝑢))↑2))
5 strlem2.1 . 2 𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))
6 ovex 7483 . 2 ((norm‘((proj𝐶)‘𝑢))↑2) ∈ V
74, 5, 6fvmpt 7031 1 (𝐶C → (𝑆𝐶) = ((norm‘((proj𝐶)‘𝑢))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cmpt 5249  cfv 6575  (class class class)co 7450  2c2 12350  cexp 14114  normcno 30957   C cch 30963  projcpjh 30971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-ov 7453
This theorem is referenced by:  strlem3a  32286  strlem4  32288  strlem5  32289  jplem2  32303
  Copyright terms: Public domain W3C validator