HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem2 Structured version   Visualization version   GIF version

Theorem strlem2 30609
Description: Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
strlem2.1 𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))
Assertion
Ref Expression
strlem2 (𝐶C → (𝑆𝐶) = ((norm‘((proj𝐶)‘𝑢))↑2))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑢
Allowed substitution hints:   𝐶(𝑢)   𝑆(𝑥,𝑢)

Proof of Theorem strlem2
StepHypRef Expression
1 fveq2 6771 . . . . 5 (𝑥 = 𝐶 → (proj𝑥) = (proj𝐶))
21fveq1d 6773 . . . 4 (𝑥 = 𝐶 → ((proj𝑥)‘𝑢) = ((proj𝐶)‘𝑢))
32fveq2d 6775 . . 3 (𝑥 = 𝐶 → (norm‘((proj𝑥)‘𝑢)) = (norm‘((proj𝐶)‘𝑢)))
43oveq1d 7286 . 2 (𝑥 = 𝐶 → ((norm‘((proj𝑥)‘𝑢))↑2) = ((norm‘((proj𝐶)‘𝑢))↑2))
5 strlem2.1 . 2 𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))
6 ovex 7304 . 2 ((norm‘((proj𝐶)‘𝑢))↑2) ∈ V
74, 5, 6fvmpt 6872 1 (𝐶C → (𝑆𝐶) = ((norm‘((proj𝐶)‘𝑢))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  cmpt 5162  cfv 6432  (class class class)co 7271  2c2 12028  cexp 13780  normcno 29281   C cch 29287  projcpjh 29295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fv 6440  df-ov 7274
This theorem is referenced by:  strlem3a  30610  strlem4  30612  strlem5  30613  jplem2  30627
  Copyright terms: Public domain W3C validator