![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > strlem2 | Structured version Visualization version GIF version |
Description: Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strlem2.1 | ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) |
Ref | Expression |
---|---|
strlem2 | ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . . 5 ⊢ (𝑥 = 𝐶 → (projℎ‘𝑥) = (projℎ‘𝐶)) | |
2 | 1 | fveq1d 6894 | . . . 4 ⊢ (𝑥 = 𝐶 → ((projℎ‘𝑥)‘𝑢) = ((projℎ‘𝐶)‘𝑢)) |
3 | 2 | fveq2d 6896 | . . 3 ⊢ (𝑥 = 𝐶 → (normℎ‘((projℎ‘𝑥)‘𝑢)) = (normℎ‘((projℎ‘𝐶)‘𝑢))) |
4 | 3 | oveq1d 7424 | . 2 ⊢ (𝑥 = 𝐶 → ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
5 | strlem2.1 | . 2 ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) | |
6 | ovex 7442 | . 2 ⊢ ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2) ∈ V | |
7 | 4, 5, 6 | fvmpt 6999 | 1 ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5232 ‘cfv 6544 (class class class)co 7409 2c2 12267 ↑cexp 14027 normℎcno 30176 Cℋ cch 30182 projℎcpjh 30190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 |
This theorem is referenced by: strlem3a 31505 strlem4 31507 strlem5 31508 jplem2 31522 |
Copyright terms: Public domain | W3C validator |