![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > strlem5 | Structured version Visualization version GIF version |
Description: Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strlem3.1 | ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) |
strlem3.2 | ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) |
strlem3.3 | ⊢ 𝐴 ∈ Cℋ |
strlem3.4 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
strlem5 | ⊢ (𝜑 → (𝑆‘𝐵) < 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strlem3.2 | . 2 ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) | |
2 | strlem3.4 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
3 | strlem3.1 | . . . . . 6 ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) | |
4 | 3 | strlem2 32184 | . . . . 5 ⊢ (𝐵 ∈ Cℋ → (𝑆‘𝐵) = ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2)) |
5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ (𝑆‘𝐵) = ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) |
6 | eldif 3957 | . . . . . . . 8 ⊢ (𝑢 ∈ (𝐴 ∖ 𝐵) ↔ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ 𝐵)) | |
7 | strlem3.3 | . . . . . . . . . 10 ⊢ 𝐴 ∈ Cℋ | |
8 | 7 | cheli 31165 | . . . . . . . . 9 ⊢ (𝑢 ∈ 𝐴 → 𝑢 ∈ ℋ) |
9 | pjnel 31659 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ Cℋ ∧ 𝑢 ∈ ℋ) → (¬ 𝑢 ∈ 𝐵 ↔ (normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢))) | |
10 | 2, 9 | mpan 688 | . . . . . . . . . 10 ⊢ (𝑢 ∈ ℋ → (¬ 𝑢 ∈ 𝐵 ↔ (normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢))) |
11 | 10 | biimpa 475 | . . . . . . . . 9 ⊢ ((𝑢 ∈ ℋ ∧ ¬ 𝑢 ∈ 𝐵) → (normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢)) |
12 | 8, 11 | sylan 578 | . . . . . . . 8 ⊢ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ 𝐵) → (normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢)) |
13 | 6, 12 | sylbi 216 | . . . . . . 7 ⊢ (𝑢 ∈ (𝐴 ∖ 𝐵) → (normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢)) |
14 | breq2 5157 | . . . . . . 7 ⊢ ((normℎ‘𝑢) = 1 → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢) ↔ (normℎ‘((projℎ‘𝐵)‘𝑢)) < 1)) | |
15 | 13, 14 | imbitrid 243 | . . . . . 6 ⊢ ((normℎ‘𝑢) = 1 → (𝑢 ∈ (𝐴 ∖ 𝐵) → (normℎ‘((projℎ‘𝐵)‘𝑢)) < 1)) |
16 | 15 | impcom 406 | . . . . 5 ⊢ ((𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1) → (normℎ‘((projℎ‘𝐵)‘𝑢)) < 1) |
17 | eldifi 4126 | . . . . . . 7 ⊢ (𝑢 ∈ (𝐴 ∖ 𝐵) → 𝑢 ∈ 𝐴) | |
18 | 2 | pjhcli 31351 | . . . . . . . . 9 ⊢ (𝑢 ∈ ℋ → ((projℎ‘𝐵)‘𝑢) ∈ ℋ) |
19 | normcl 31058 | . . . . . . . . 9 ⊢ (((projℎ‘𝐵)‘𝑢) ∈ ℋ → (normℎ‘((projℎ‘𝐵)‘𝑢)) ∈ ℝ) | |
20 | 18, 19 | syl 17 | . . . . . . . 8 ⊢ (𝑢 ∈ ℋ → (normℎ‘((projℎ‘𝐵)‘𝑢)) ∈ ℝ) |
21 | normge0 31059 | . . . . . . . . 9 ⊢ (((projℎ‘𝐵)‘𝑢) ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐵)‘𝑢))) | |
22 | 18, 21 | syl 17 | . . . . . . . 8 ⊢ (𝑢 ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐵)‘𝑢))) |
23 | 1re 11264 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
24 | 0le1 11787 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
25 | lt2sq 14152 | . . . . . . . . 9 ⊢ ((((normℎ‘((projℎ‘𝐵)‘𝑢)) ∈ ℝ ∧ 0 ≤ (normℎ‘((projℎ‘𝐵)‘𝑢))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < 1 ↔ ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2))) | |
26 | 23, 24, 25 | mpanr12 703 | . . . . . . . 8 ⊢ (((normℎ‘((projℎ‘𝐵)‘𝑢)) ∈ ℝ ∧ 0 ≤ (normℎ‘((projℎ‘𝐵)‘𝑢))) → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < 1 ↔ ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2))) |
27 | 20, 22, 26 | syl2anc 582 | . . . . . . 7 ⊢ (𝑢 ∈ ℋ → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < 1 ↔ ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2))) |
28 | 17, 8, 27 | 3syl 18 | . . . . . 6 ⊢ (𝑢 ∈ (𝐴 ∖ 𝐵) → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < 1 ↔ ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2))) |
29 | 28 | adantr 479 | . . . . 5 ⊢ ((𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1) → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < 1 ↔ ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2))) |
30 | 16, 29 | mpbid 231 | . . . 4 ⊢ ((𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1) → ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2)) |
31 | 5, 30 | eqbrtrid 5188 | . . 3 ⊢ ((𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1) → (𝑆‘𝐵) < (1↑2)) |
32 | sq1 14213 | . . 3 ⊢ (1↑2) = 1 | |
33 | 31, 32 | breqtrdi 5194 | . 2 ⊢ ((𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1) → (𝑆‘𝐵) < 1) |
34 | 1, 33 | sylbi 216 | 1 ⊢ (𝜑 → (𝑆‘𝐵) < 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 class class class wbr 5153 ↦ cmpt 5236 ‘cfv 6554 (class class class)co 7424 ℝcr 11157 0cc0 11158 1c1 11159 < clt 11298 ≤ cle 11299 2c2 12319 ↑cexp 14081 ℋchba 30852 normℎcno 30856 Cℋ cch 30862 projℎcpjh 30870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cc 10478 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 ax-mulf 11238 ax-hilex 30932 ax-hfvadd 30933 ax-hvcom 30934 ax-hvass 30935 ax-hv0cl 30936 ax-hvaddid 30937 ax-hfvmul 30938 ax-hvmulid 30939 ax-hvmulass 30940 ax-hvdistr1 30941 ax-hvdistr2 30942 ax-hvmul0 30943 ax-hfi 31012 ax-his1 31015 ax-his2 31016 ax-his3 31017 ax-his4 31018 ax-hcompl 31135 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-oadd 8500 df-omul 8501 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-fi 9454 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-acn 9985 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-fl 13812 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-rlim 15491 df-sum 15691 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-mulg 19062 df-cntz 19311 df-cmn 19780 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-fbas 21340 df-fg 21341 df-cnfld 21344 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-cld 23014 df-ntr 23015 df-cls 23016 df-nei 23093 df-cn 23222 df-cnp 23223 df-lm 23224 df-haus 23310 df-tx 23557 df-hmeo 23750 df-fil 23841 df-fm 23933 df-flim 23934 df-flf 23935 df-xms 24317 df-ms 24318 df-tms 24319 df-cfil 25274 df-cau 25275 df-cmet 25276 df-grpo 30426 df-gid 30427 df-ginv 30428 df-gdiv 30429 df-ablo 30478 df-vc 30492 df-nv 30525 df-va 30528 df-ba 30529 df-sm 30530 df-0v 30531 df-vs 30532 df-nmcv 30533 df-ims 30534 df-dip 30634 df-ssp 30655 df-ph 30746 df-cbn 30796 df-hnorm 30901 df-hba 30902 df-hvsub 30904 df-hlim 30905 df-hcau 30906 df-sh 31140 df-ch 31154 df-oc 31185 df-ch0 31186 df-shs 31241 df-pjh 31328 |
This theorem is referenced by: strlem6 32189 |
Copyright terms: Public domain | W3C validator |