![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > strlem5 | Structured version Visualization version GIF version |
Description: Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strlem3.1 | ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) |
strlem3.2 | ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) |
strlem3.3 | ⊢ 𝐴 ∈ Cℋ |
strlem3.4 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
strlem5 | ⊢ (𝜑 → (𝑆‘𝐵) < 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strlem3.2 | . 2 ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) | |
2 | strlem3.4 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
3 | strlem3.1 | . . . . . 6 ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) | |
4 | 3 | strlem2 31939 | . . . . 5 ⊢ (𝐵 ∈ Cℋ → (𝑆‘𝐵) = ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2)) |
5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ (𝑆‘𝐵) = ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) |
6 | eldif 3958 | . . . . . . . 8 ⊢ (𝑢 ∈ (𝐴 ∖ 𝐵) ↔ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ 𝐵)) | |
7 | strlem3.3 | . . . . . . . . . 10 ⊢ 𝐴 ∈ Cℋ | |
8 | 7 | cheli 30920 | . . . . . . . . 9 ⊢ (𝑢 ∈ 𝐴 → 𝑢 ∈ ℋ) |
9 | pjnel 31414 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ Cℋ ∧ 𝑢 ∈ ℋ) → (¬ 𝑢 ∈ 𝐵 ↔ (normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢))) | |
10 | 2, 9 | mpan 687 | . . . . . . . . . 10 ⊢ (𝑢 ∈ ℋ → (¬ 𝑢 ∈ 𝐵 ↔ (normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢))) |
11 | 10 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝑢 ∈ ℋ ∧ ¬ 𝑢 ∈ 𝐵) → (normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢)) |
12 | 8, 11 | sylan 579 | . . . . . . . 8 ⊢ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ 𝐵) → (normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢)) |
13 | 6, 12 | sylbi 216 | . . . . . . 7 ⊢ (𝑢 ∈ (𝐴 ∖ 𝐵) → (normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢)) |
14 | breq2 5152 | . . . . . . 7 ⊢ ((normℎ‘𝑢) = 1 → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < (normℎ‘𝑢) ↔ (normℎ‘((projℎ‘𝐵)‘𝑢)) < 1)) | |
15 | 13, 14 | imbitrid 243 | . . . . . 6 ⊢ ((normℎ‘𝑢) = 1 → (𝑢 ∈ (𝐴 ∖ 𝐵) → (normℎ‘((projℎ‘𝐵)‘𝑢)) < 1)) |
16 | 15 | impcom 407 | . . . . 5 ⊢ ((𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1) → (normℎ‘((projℎ‘𝐵)‘𝑢)) < 1) |
17 | eldifi 4126 | . . . . . . 7 ⊢ (𝑢 ∈ (𝐴 ∖ 𝐵) → 𝑢 ∈ 𝐴) | |
18 | 2 | pjhcli 31106 | . . . . . . . . 9 ⊢ (𝑢 ∈ ℋ → ((projℎ‘𝐵)‘𝑢) ∈ ℋ) |
19 | normcl 30813 | . . . . . . . . 9 ⊢ (((projℎ‘𝐵)‘𝑢) ∈ ℋ → (normℎ‘((projℎ‘𝐵)‘𝑢)) ∈ ℝ) | |
20 | 18, 19 | syl 17 | . . . . . . . 8 ⊢ (𝑢 ∈ ℋ → (normℎ‘((projℎ‘𝐵)‘𝑢)) ∈ ℝ) |
21 | normge0 30814 | . . . . . . . . 9 ⊢ (((projℎ‘𝐵)‘𝑢) ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐵)‘𝑢))) | |
22 | 18, 21 | syl 17 | . . . . . . . 8 ⊢ (𝑢 ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐵)‘𝑢))) |
23 | 1re 11221 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
24 | 0le1 11744 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
25 | lt2sq 14105 | . . . . . . . . 9 ⊢ ((((normℎ‘((projℎ‘𝐵)‘𝑢)) ∈ ℝ ∧ 0 ≤ (normℎ‘((projℎ‘𝐵)‘𝑢))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < 1 ↔ ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2))) | |
26 | 23, 24, 25 | mpanr12 702 | . . . . . . . 8 ⊢ (((normℎ‘((projℎ‘𝐵)‘𝑢)) ∈ ℝ ∧ 0 ≤ (normℎ‘((projℎ‘𝐵)‘𝑢))) → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < 1 ↔ ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2))) |
27 | 20, 22, 26 | syl2anc 583 | . . . . . . 7 ⊢ (𝑢 ∈ ℋ → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < 1 ↔ ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2))) |
28 | 17, 8, 27 | 3syl 18 | . . . . . 6 ⊢ (𝑢 ∈ (𝐴 ∖ 𝐵) → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < 1 ↔ ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2))) |
29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1) → ((normℎ‘((projℎ‘𝐵)‘𝑢)) < 1 ↔ ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2))) |
30 | 16, 29 | mpbid 231 | . . . 4 ⊢ ((𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1) → ((normℎ‘((projℎ‘𝐵)‘𝑢))↑2) < (1↑2)) |
31 | 5, 30 | eqbrtrid 5183 | . . 3 ⊢ ((𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1) → (𝑆‘𝐵) < (1↑2)) |
32 | sq1 14166 | . . 3 ⊢ (1↑2) = 1 | |
33 | 31, 32 | breqtrdi 5189 | . 2 ⊢ ((𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1) → (𝑆‘𝐵) < 1) |
34 | 1, 33 | sylbi 216 | 1 ⊢ (𝜑 → (𝑆‘𝐵) < 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∖ cdif 3945 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 ℝcr 11115 0cc0 11116 1c1 11117 < clt 11255 ≤ cle 11256 2c2 12274 ↑cexp 14034 ℋchba 30607 normℎcno 30611 Cℋ cch 30617 projℎcpjh 30625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cc 10436 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 ax-hilex 30687 ax-hfvadd 30688 ax-hvcom 30689 ax-hvass 30690 ax-hv0cl 30691 ax-hvaddid 30692 ax-hfvmul 30693 ax-hvmulid 30694 ax-hvmulass 30695 ax-hvdistr1 30696 ax-hvdistr2 30697 ax-hvmul0 30698 ax-hfi 30767 ax-his1 30770 ax-his2 30771 ax-his3 30772 ax-his4 30773 ax-hcompl 30890 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-omul 8477 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-acn 9943 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-rlim 15440 df-sum 15640 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19229 df-cmn 19698 df-psmet 21226 df-xmet 21227 df-met 21228 df-bl 21229 df-mopn 21230 df-fbas 21231 df-fg 21232 df-cnfld 21235 df-top 22717 df-topon 22734 df-topsp 22756 df-bases 22770 df-cld 22844 df-ntr 22845 df-cls 22846 df-nei 22923 df-cn 23052 df-cnp 23053 df-lm 23054 df-haus 23140 df-tx 23387 df-hmeo 23580 df-fil 23671 df-fm 23763 df-flim 23764 df-flf 23765 df-xms 24147 df-ms 24148 df-tms 24149 df-cfil 25104 df-cau 25105 df-cmet 25106 df-grpo 30181 df-gid 30182 df-ginv 30183 df-gdiv 30184 df-ablo 30233 df-vc 30247 df-nv 30280 df-va 30283 df-ba 30284 df-sm 30285 df-0v 30286 df-vs 30287 df-nmcv 30288 df-ims 30289 df-dip 30389 df-ssp 30410 df-ph 30501 df-cbn 30551 df-hnorm 30656 df-hba 30657 df-hvsub 30659 df-hlim 30660 df-hcau 30661 df-sh 30895 df-ch 30909 df-oc 30940 df-ch0 30941 df-shs 30996 df-pjh 31083 |
This theorem is referenced by: strlem6 31944 |
Copyright terms: Public domain | W3C validator |