MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strss Structured version   Visualization version   GIF version

Theorem strss 16757
Description: Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.)
Hypotheses
Ref Expression
strss.t 𝑇 ∈ V
strss.f Fun 𝑇
strss.s 𝑆𝑇
strss.e 𝐸 = Slot (𝐸‘ndx)
strss.n ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
Assertion
Ref Expression
strss (𝐸𝑇) = (𝐸𝑆)

Proof of Theorem strss
StepHypRef Expression
1 strss.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 strss.t . . . 4 𝑇 ∈ V
32a1i 11 . . 3 (⊤ → 𝑇 ∈ V)
4 strss.f . . . 4 Fun 𝑇
54a1i 11 . . 3 (⊤ → Fun 𝑇)
6 strss.s . . . 4 𝑆𝑇
76a1i 11 . . 3 (⊤ → 𝑆𝑇)
8 strss.n . . . 4 ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
98a1i 11 . . 3 (⊤ → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
101, 3, 5, 7, 9strssd 16756 . 2 (⊤ → (𝐸𝑇) = (𝐸𝑆))
1110mptru 1550 1 (𝐸𝑇) = (𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wtru 1544  wcel 2110  Vcvv 3408  wss 3866  cop 4547  Fun wfun 6374  cfv 6380  Slot cslot 16734  ndxcnx 16744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-slot 16735
This theorem is referenced by:  grpss  18385
  Copyright terms: Public domain W3C validator