![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strss | Structured version Visualization version GIF version |
Description: Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.) |
Ref | Expression |
---|---|
strss.t | ⊢ 𝑇 ∈ V |
strss.f | ⊢ Fun 𝑇 |
strss.s | ⊢ 𝑆 ⊆ 𝑇 |
strss.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strss.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
Ref | Expression |
---|---|
strss | ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strss.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | strss.t | . . . 4 ⊢ 𝑇 ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 𝑇 ∈ V) |
4 | strss.f | . . . 4 ⊢ Fun 𝑇 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Fun 𝑇) |
6 | strss.s | . . . 4 ⊢ 𝑆 ⊆ 𝑇 | |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → 𝑆 ⊆ 𝑇) |
8 | strss.n | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
10 | 1, 3, 5, 7, 9 | strssd 16231 | . 2 ⊢ (⊤ → (𝐸‘𝑇) = (𝐸‘𝑆)) |
11 | 10 | mptru 1661 | 1 ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ⊤wtru 1654 ∈ wcel 2157 Vcvv 3384 ⊆ wss 3768 〈cop 4373 Fun wfun 6094 ‘cfv 6100 ndxcnx 16178 Slot cslot 16180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pr 5096 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3386 df-sbc 3633 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-if 4277 df-sn 4368 df-pr 4370 df-op 4374 df-uni 4628 df-br 4843 df-opab 4905 df-mpt 4922 df-id 5219 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-iota 6063 df-fun 6102 df-fv 6108 df-slot 16185 |
This theorem is referenced by: grpss 17753 |
Copyright terms: Public domain | W3C validator |