MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strss Structured version   Visualization version   GIF version

Theorem strss 17136
Description: Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.)
Hypotheses
Ref Expression
strss.t 𝑇 ∈ V
strss.f Fun 𝑇
strss.s 𝑆𝑇
strss.e 𝐸 = Slot (𝐸‘ndx)
strss.n ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
Assertion
Ref Expression
strss (𝐸𝑇) = (𝐸𝑆)

Proof of Theorem strss
StepHypRef Expression
1 strss.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 strss.t . . . 4 𝑇 ∈ V
32a1i 11 . . 3 (⊤ → 𝑇 ∈ V)
4 strss.f . . . 4 Fun 𝑇
54a1i 11 . . 3 (⊤ → Fun 𝑇)
6 strss.s . . . 4 𝑆𝑇
76a1i 11 . . 3 (⊤ → 𝑆𝑇)
8 strss.n . . . 4 ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
98a1i 11 . . 3 (⊤ → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
101, 3, 5, 7, 9strssd 17135 . 2 (⊤ → (𝐸𝑇) = (𝐸𝑆))
1110mptru 1549 1 (𝐸𝑇) = (𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wtru 1543  wcel 2107  Vcvv 3475  wss 3947  cop 4633  Fun wfun 6534  cfv 6540  Slot cslot 17110  ndxcnx 17122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-slot 17111
This theorem is referenced by:  grpss  18836
  Copyright terms: Public domain W3C validator