| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strss | Structured version Visualization version GIF version | ||
| Description: Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.) |
| Ref | Expression |
|---|---|
| strss.t | ⊢ 𝑇 ∈ V |
| strss.f | ⊢ Fun 𝑇 |
| strss.s | ⊢ 𝑆 ⊆ 𝑇 |
| strss.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strss.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| Ref | Expression |
|---|---|
| strss | ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strss.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | strss.t | . . . 4 ⊢ 𝑇 ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 𝑇 ∈ V) |
| 4 | strss.f | . . . 4 ⊢ Fun 𝑇 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Fun 𝑇) |
| 6 | strss.s | . . . 4 ⊢ 𝑆 ⊆ 𝑇 | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → 𝑆 ⊆ 𝑇) |
| 8 | strss.n | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| 10 | 1, 3, 5, 7, 9 | strssd 17116 | . 2 ⊢ (⊤ → (𝐸‘𝑇) = (𝐸‘𝑆)) |
| 11 | 10 | mptru 1548 | 1 ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 〈cop 4582 Fun wfun 6475 ‘cfv 6481 Slot cslot 17092 ndxcnx 17104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-slot 17093 |
| This theorem is referenced by: grpss 18867 |
| Copyright terms: Public domain | W3C validator |