![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strss | Structured version Visualization version GIF version |
Description: Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.) |
Ref | Expression |
---|---|
strss.t | ⊢ 𝑇 ∈ V |
strss.f | ⊢ Fun 𝑇 |
strss.s | ⊢ 𝑆 ⊆ 𝑇 |
strss.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strss.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
Ref | Expression |
---|---|
strss | ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strss.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | strss.t | . . . 4 ⊢ 𝑇 ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 𝑇 ∈ V) |
4 | strss.f | . . . 4 ⊢ Fun 𝑇 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Fun 𝑇) |
6 | strss.s | . . . 4 ⊢ 𝑆 ⊆ 𝑇 | |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → 𝑆 ⊆ 𝑇) |
8 | strss.n | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
10 | 1, 3, 5, 7, 9 | strssd 17253 | . 2 ⊢ (⊤ → (𝐸‘𝑇) = (𝐸‘𝑆)) |
11 | 10 | mptru 1544 | 1 ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 〈cop 4654 Fun wfun 6567 ‘cfv 6573 Slot cslot 17228 ndxcnx 17240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-slot 17229 |
This theorem is referenced by: grpss 18994 |
Copyright terms: Public domain | W3C validator |