Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strss | Structured version Visualization version GIF version |
Description: Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.) |
Ref | Expression |
---|---|
strss.t | ⊢ 𝑇 ∈ V |
strss.f | ⊢ Fun 𝑇 |
strss.s | ⊢ 𝑆 ⊆ 𝑇 |
strss.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strss.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
Ref | Expression |
---|---|
strss | ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strss.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | strss.t | . . . 4 ⊢ 𝑇 ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 𝑇 ∈ V) |
4 | strss.f | . . . 4 ⊢ Fun 𝑇 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Fun 𝑇) |
6 | strss.s | . . . 4 ⊢ 𝑆 ⊆ 𝑇 | |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → 𝑆 ⊆ 𝑇) |
8 | strss.n | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
10 | 1, 3, 5, 7, 9 | strssd 16756 | . 2 ⊢ (⊤ → (𝐸‘𝑇) = (𝐸‘𝑆)) |
11 | 10 | mptru 1550 | 1 ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ⊤wtru 1544 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 〈cop 4547 Fun wfun 6374 ‘cfv 6380 Slot cslot 16734 ndxcnx 16744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-slot 16735 |
This theorem is referenced by: grpss 18385 |
Copyright terms: Public domain | W3C validator |