![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strss | Structured version Visualization version GIF version |
Description: Propagate component extraction to a structure π from a subset structure π. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.) |
Ref | Expression |
---|---|
strss.t | β’ π β V |
strss.f | β’ Fun π |
strss.s | β’ π β π |
strss.e | β’ πΈ = Slot (πΈβndx) |
strss.n | β’ β¨(πΈβndx), πΆβ© β π |
Ref | Expression |
---|---|
strss | β’ (πΈβπ) = (πΈβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strss.e | . . 3 β’ πΈ = Slot (πΈβndx) | |
2 | strss.t | . . . 4 β’ π β V | |
3 | 2 | a1i 11 | . . 3 β’ (β€ β π β V) |
4 | strss.f | . . . 4 β’ Fun π | |
5 | 4 | a1i 11 | . . 3 β’ (β€ β Fun π) |
6 | strss.s | . . . 4 β’ π β π | |
7 | 6 | a1i 11 | . . 3 β’ (β€ β π β π) |
8 | strss.n | . . . 4 β’ β¨(πΈβndx), πΆβ© β π | |
9 | 8 | a1i 11 | . . 3 β’ (β€ β β¨(πΈβndx), πΆβ© β π) |
10 | 1, 3, 5, 7, 9 | strssd 17135 | . 2 β’ (β€ β (πΈβπ) = (πΈβπ)) |
11 | 10 | mptru 1548 | 1 β’ (πΈβπ) = (πΈβπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β€wtru 1542 β wcel 2106 Vcvv 3474 β wss 3947 β¨cop 4633 Fun wfun 6534 βcfv 6540 Slot cslot 17110 ndxcnx 17122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-slot 17111 |
This theorem is referenced by: grpss 18836 |
Copyright terms: Public domain | W3C validator |