| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strss | Structured version Visualization version GIF version | ||
| Description: Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.) |
| Ref | Expression |
|---|---|
| strss.t | ⊢ 𝑇 ∈ V |
| strss.f | ⊢ Fun 𝑇 |
| strss.s | ⊢ 𝑆 ⊆ 𝑇 |
| strss.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strss.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| Ref | Expression |
|---|---|
| strss | ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strss.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | strss.t | . . . 4 ⊢ 𝑇 ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 𝑇 ∈ V) |
| 4 | strss.f | . . . 4 ⊢ Fun 𝑇 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Fun 𝑇) |
| 6 | strss.s | . . . 4 ⊢ 𝑆 ⊆ 𝑇 | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → 𝑆 ⊆ 𝑇) |
| 8 | strss.n | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| 10 | 1, 3, 5, 7, 9 | strssd 17229 | . 2 ⊢ (⊤ → (𝐸‘𝑇) = (𝐸‘𝑆)) |
| 11 | 10 | mptru 1547 | 1 ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 〈cop 4612 Fun wfun 6530 ‘cfv 6536 Slot cslot 17205 ndxcnx 17217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-slot 17206 |
| This theorem is referenced by: grpss 18942 |
| Copyright terms: Public domain | W3C validator |