![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgextfve | Structured version Visualization version GIF version |
Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
Ref | Expression |
---|---|
symgextfve | ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . 3 ⊢ (𝑋 = 𝐾 → (𝐸‘𝑋) = (𝐸‘𝐾)) | |
2 | iftrue 4537 | . . . . 5 ⊢ (𝑥 = 𝐾 → if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥)) = 𝐾) | |
3 | symgext.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
4 | 2, 3 | fvmptg 7014 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁) → (𝐸‘𝐾) = 𝐾) |
5 | 4 | anidms 566 | . . 3 ⊢ (𝐾 ∈ 𝑁 → (𝐸‘𝐾) = 𝐾) |
6 | 1, 5 | sylan9eqr 2797 | . 2 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑋 = 𝐾) → (𝐸‘𝑋) = 𝐾) |
7 | 6 | ex 412 | 1 ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ifcif 4531 {csn 4631 ↦ cmpt 5231 ‘cfv 6563 Basecbs 17245 SymGrpcsymg 19401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: symgextf1lem 19453 symgextfo 19455 |
Copyright terms: Public domain | W3C validator |