MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfve Structured version   Visualization version   GIF version

Theorem symgextfve 18942
Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextfve (𝐾𝑁 → (𝑋 = 𝐾 → (𝐸𝑋) = 𝐾))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝑥,𝑋
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextfve
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑋 = 𝐾 → (𝐸𝑋) = (𝐸𝐾))
2 iftrue 4462 . . . . 5 (𝑥 = 𝐾 → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) = 𝐾)
3 symgext.e . . . . 5 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
42, 3fvmptg 6855 . . . 4 ((𝐾𝑁𝐾𝑁) → (𝐸𝐾) = 𝐾)
54anidms 566 . . 3 (𝐾𝑁 → (𝐸𝐾) = 𝐾)
61, 5sylan9eqr 2801 . 2 ((𝐾𝑁𝑋 = 𝐾) → (𝐸𝑋) = 𝐾)
76ex 412 1 (𝐾𝑁 → (𝑋 = 𝐾 → (𝐸𝑋) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cdif 3880  ifcif 4456  {csn 4558  cmpt 5153  cfv 6418  Basecbs 16840  SymGrpcsymg 18889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  symgextf1lem  18943  symgextfo  18945
  Copyright terms: Public domain W3C validator