Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgextfve | Structured version Visualization version GIF version |
Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
Ref | Expression |
---|---|
symgextfve | ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . 3 ⊢ (𝑋 = 𝐾 → (𝐸‘𝑋) = (𝐸‘𝐾)) | |
2 | iftrue 4465 | . . . . 5 ⊢ (𝑥 = 𝐾 → if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥)) = 𝐾) | |
3 | symgext.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
4 | 2, 3 | fvmptg 6873 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁) → (𝐸‘𝐾) = 𝐾) |
5 | 4 | anidms 567 | . . 3 ⊢ (𝐾 ∈ 𝑁 → (𝐸‘𝐾) = 𝐾) |
6 | 1, 5 | sylan9eqr 2800 | . 2 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑋 = 𝐾) → (𝐸‘𝑋) = 𝐾) |
7 | 6 | ex 413 | 1 ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ifcif 4459 {csn 4561 ↦ cmpt 5157 ‘cfv 6433 Basecbs 16912 SymGrpcsymg 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: symgextf1lem 19028 symgextfo 19030 |
Copyright terms: Public domain | W3C validator |