MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfve Structured version   Visualization version   GIF version

Theorem symgextfve 19452
Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextfve (𝐾𝑁 → (𝑋 = 𝐾 → (𝐸𝑋) = 𝐾))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝑥,𝑋
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextfve
StepHypRef Expression
1 fveq2 6907 . . 3 (𝑋 = 𝐾 → (𝐸𝑋) = (𝐸𝐾))
2 iftrue 4537 . . . . 5 (𝑥 = 𝐾 → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) = 𝐾)
3 symgext.e . . . . 5 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
42, 3fvmptg 7014 . . . 4 ((𝐾𝑁𝐾𝑁) → (𝐸𝐾) = 𝐾)
54anidms 566 . . 3 (𝐾𝑁 → (𝐸𝐾) = 𝐾)
61, 5sylan9eqr 2797 . 2 ((𝐾𝑁𝑋 = 𝐾) → (𝐸𝑋) = 𝐾)
76ex 412 1 (𝐾𝑁 → (𝑋 = 𝐾 → (𝐸𝑋) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cdif 3960  ifcif 4531  {csn 4631  cmpt 5231  cfv 6563  Basecbs 17245  SymGrpcsymg 19401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571
This theorem is referenced by:  symgextf1lem  19453  symgextfo  19455
  Copyright terms: Public domain W3C validator