MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfve Structured version   Visualization version   GIF version

Theorem symgextfve 18665
Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextfve (𝐾𝑁 → (𝑋 = 𝐾 → (𝐸𝑋) = 𝐾))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝑥,𝑋
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextfve
StepHypRef Expression
1 fveq2 6674 . . 3 (𝑋 = 𝐾 → (𝐸𝑋) = (𝐸𝐾))
2 iftrue 4420 . . . . 5 (𝑥 = 𝐾 → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) = 𝐾)
3 symgext.e . . . . 5 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
42, 3fvmptg 6773 . . . 4 ((𝐾𝑁𝐾𝑁) → (𝐸𝐾) = 𝐾)
54anidms 570 . . 3 (𝐾𝑁 → (𝐸𝐾) = 𝐾)
61, 5sylan9eqr 2795 . 2 ((𝐾𝑁𝑋 = 𝐾) → (𝐸𝑋) = 𝐾)
76ex 416 1 (𝐾𝑁 → (𝑋 = 𝐾 → (𝐸𝑋) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  cdif 3840  ifcif 4414  {csn 4516  cmpt 5110  cfv 6339  Basecbs 16586  SymGrpcsymg 18613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6297  df-fun 6341  df-fv 6347
This theorem is referenced by:  symgextf1lem  18666  symgextfo  18668
  Copyright terms: Public domain W3C validator