![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgextfve | Structured version Visualization version GIF version |
Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
Ref | Expression |
---|---|
symgextfve | ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝑋 = 𝐾 → (𝐸‘𝑋) = (𝐸‘𝐾)) | |
2 | iftrue 4554 | . . . . 5 ⊢ (𝑥 = 𝐾 → if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥)) = 𝐾) | |
3 | symgext.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
4 | 2, 3 | fvmptg 7027 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁) → (𝐸‘𝐾) = 𝐾) |
5 | 4 | anidms 566 | . . 3 ⊢ (𝐾 ∈ 𝑁 → (𝐸‘𝐾) = 𝐾) |
6 | 1, 5 | sylan9eqr 2802 | . 2 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑋 = 𝐾) → (𝐸‘𝑋) = 𝐾) |
7 | 6 | ex 412 | 1 ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ifcif 4548 {csn 4648 ↦ cmpt 5249 ‘cfv 6573 Basecbs 17258 SymGrpcsymg 19410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: symgextf1lem 19462 symgextfo 19464 |
Copyright terms: Public domain | W3C validator |