| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgextfve | Structured version Visualization version GIF version | ||
| Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.) |
| Ref | Expression |
|---|---|
| symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
| Ref | Expression |
|---|---|
| symgextfve | ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝑋 = 𝐾 → (𝐸‘𝑋) = (𝐸‘𝐾)) | |
| 2 | iftrue 4481 | . . . . 5 ⊢ (𝑥 = 𝐾 → if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥)) = 𝐾) | |
| 3 | symgext.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
| 4 | 2, 3 | fvmptg 6927 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁) → (𝐸‘𝐾) = 𝐾) |
| 5 | 4 | anidms 566 | . . 3 ⊢ (𝐾 ∈ 𝑁 → (𝐸‘𝐾) = 𝐾) |
| 6 | 1, 5 | sylan9eqr 2788 | . 2 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑋 = 𝐾) → (𝐸‘𝑋) = 𝐾) |
| 7 | 6 | ex 412 | 1 ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ifcif 4475 {csn 4576 ↦ cmpt 5172 ‘cfv 6481 Basecbs 17117 SymGrpcsymg 19279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: symgextf1lem 19330 symgextfo 19332 |
| Copyright terms: Public domain | W3C validator |