![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgextf1lem | Structured version Visualization version GIF version |
Description: Lemma for symgextf1 18192. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
Ref | Expression |
---|---|
symgextf1lem | ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸‘𝑋) ≠ (𝐸‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2826 | . . . . . . 7 ⊢ (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾})) | |
2 | symgext.s | . . . . . . 7 ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
3 | 1, 2 | symgfv 18158 | . . . . . 6 ⊢ ((𝑍 ∈ 𝑆 ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝑍‘𝑋) ∈ (𝑁 ∖ {𝐾})) |
4 | 3 | adantll 707 | . . . . 5 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝑍‘𝑋) ∈ (𝑁 ∖ {𝐾})) |
5 | eldifsni 4541 | . . . . . 6 ⊢ ((𝑍‘𝑋) ∈ (𝑁 ∖ {𝐾}) → (𝑍‘𝑋) ≠ 𝐾) | |
6 | symgext.e | . . . . . . . . 9 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
7 | 2, 6 | symgextfv 18189 | . . . . . . . 8 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) |
8 | 7 | imp 397 | . . . . . . 7 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) = (𝑍‘𝑋)) |
9 | 8 | neeq1d 3059 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ((𝐸‘𝑋) ≠ 𝐾 ↔ (𝑍‘𝑋) ≠ 𝐾)) |
10 | 5, 9 | syl5ibr 238 | . . . . 5 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑋) ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) ≠ 𝐾)) |
11 | 4, 10 | mpd 15 | . . . 4 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑋) ≠ 𝐾) |
12 | 11 | adantrr 710 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸‘𝑋) ≠ 𝐾) |
13 | elsni 4415 | . . . . . 6 ⊢ (𝑌 ∈ {𝐾} → 𝑌 = 𝐾) | |
14 | 2, 6 | symgextfve 18190 | . . . . . . 7 ⊢ (𝐾 ∈ 𝑁 → (𝑌 = 𝐾 → (𝐸‘𝑌) = 𝐾)) |
15 | 14 | adantr 474 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑌 = 𝐾 → (𝐸‘𝑌) = 𝐾)) |
16 | 13, 15 | syl5com 31 | . . . . 5 ⊢ (𝑌 ∈ {𝐾} → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑌) = 𝐾)) |
17 | 16 | adantl 475 | . . . 4 ⊢ ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑌) = 𝐾)) |
18 | 17 | impcom 398 | . . 3 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸‘𝑌) = 𝐾) |
19 | 12, 18 | neeqtrrd 3074 | . 2 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸‘𝑋) ≠ (𝐸‘𝑌)) |
20 | 19 | ex 403 | 1 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸‘𝑋) ≠ (𝐸‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 ∖ cdif 3796 ifcif 4307 {csn 4398 ↦ cmpt 4953 ‘cfv 6124 Basecbs 16223 SymGrpcsymg 18148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-map 8125 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-7 11420 df-8 11421 df-9 11422 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-plusg 16319 df-tset 16325 df-symg 18149 |
This theorem is referenced by: symgextf1 18192 |
Copyright terms: Public domain | W3C validator |