Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclubg Structured version   Visualization version   GIF version

Theorem trclubg 14353
 Description: The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure (as a relation). (Contributed by RP, 17-May-2020.)
Assertion
Ref Expression
trclubg (𝑅𝑉 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Distinct variable group:   𝑅,𝑟
Allowed substitution hint:   𝑉(𝑟)

Proof of Theorem trclubg
StepHypRef Expression
1 trclublem 14349 . 2 (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
2 intss1 4854 . 2 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl 17 1 (𝑅𝑉 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2111  {cab 2776   ∪ cun 3879   ⊆ wss 3881  ∩ cint 4839   × cxp 5518  dom cdm 5520  ran crn 5521   ∘ ccom 5524 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-int 4840  df-br 5032  df-opab 5094  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532 This theorem is referenced by:  trclfv  14354  trclfvub  14361  dmtrcl  40370  rntrcl  40371
 Copyright terms: Public domain W3C validator