MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcrank Structured version   Visualization version   GIF version

Theorem tcrank 9777
Description: This theorem expresses two different facts from the two subset implications in this equality. In the forward direction, it says that the transitive closure has members of every rank below 𝐴. Stated another way, to construct a set at a given rank, you have to climb the entire hierarchy of ordinals below (rank‘𝐴), constructing at least one set at each level in order to move up the ranks. In the reverse direction, it says that every member of (TC‘𝐴) has a rank below the rank of 𝐴, since intuitively it contains only the members of 𝐴 and the members of those and so on, but nothing "bigger" than 𝐴. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcrank (𝐴 (𝑅1 “ On) → (rank‘𝐴) = (rank “ (TC‘𝐴)))

Proof of Theorem tcrank
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankwflemb 9686 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑦))
2 onsuc 7743 . . . . 5 (𝑦 ∈ On → suc 𝑦 ∈ On)
3 fveq2 6822 . . . . . . . 8 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
43raleqdv 3292 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑧 ∈ (𝑅1𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧))))
5 fveq2 6822 . . . . . . . . 9 (𝑧 = 𝑢 → (rank‘𝑧) = (rank‘𝑢))
6 fveq2 6822 . . . . . . . . . 10 (𝑧 = 𝑢 → (TC‘𝑧) = (TC‘𝑢))
76imaeq2d 6008 . . . . . . . . 9 (𝑧 = 𝑢 → (rank “ (TC‘𝑧)) = (rank “ (TC‘𝑢)))
85, 7sseq12d 3963 . . . . . . . 8 (𝑧 = 𝑢 → ((rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
98cbvralvw 3210 . . . . . . 7 (∀𝑧 ∈ (𝑅1𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
104, 9bitrdi 287 . . . . . 6 (𝑥 = 𝑦 → (∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
11 fveq2 6822 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
1211raleqdv 3292 . . . . . 6 (𝑥 = suc 𝑦 → (∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑧 ∈ (𝑅1‘suc 𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧))))
13 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)))
14 simprl 770 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → 𝑧 ∈ (𝑅1𝑥))
15 simplr 768 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
16 rankr1ai 9691 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑅1𝑥) → (rank‘𝑧) ∈ 𝑥)
17 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑦 = (rank‘𝑧) → (𝑅1𝑦) = (𝑅1‘(rank‘𝑧)))
1817raleqdv 3292 . . . . . . . . . . . . . . . . 17 (𝑦 = (rank‘𝑧) → (∀𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ↔ ∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
1918rspcv 3568 . . . . . . . . . . . . . . . 16 ((rank‘𝑧) ∈ 𝑥 → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2016, 19syl 17 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝑅1𝑥) → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
21 r1elwf 9689 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑅1𝑥) → 𝑧 (𝑅1 “ On))
22 r1rankidb 9697 . . . . . . . . . . . . . . . 16 (𝑧 (𝑅1 “ On) → 𝑧 ⊆ (𝑅1‘(rank‘𝑧)))
23 ssralv 3998 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑅1‘(rank‘𝑧)) → (∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2421, 22, 233syl 18 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝑅1𝑥) → (∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2520, 24syld 47 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑅1𝑥) → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2614, 15, 25sylc 65 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
27 rankval3b 9719 . . . . . . . . . . . . . . . . . . . 20 (𝑧 (𝑅1 “ On) → (rank‘𝑧) = {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥})
2827eleq2d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank‘𝑧) ↔ 𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥}))
2928biimpd 229 . . . . . . . . . . . . . . . . . 18 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank‘𝑧) → 𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥}))
30 rankon 9688 . . . . . . . . . . . . . . . . . . . 20 (rank‘𝑧) ∈ On
3130oneli 6421 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (rank‘𝑧) → 𝑤 ∈ On)
32 eleq2w 2815 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((rank‘𝑢) ∈ 𝑥 ↔ (rank‘𝑢) ∈ 𝑤))
3332ralbidv 3155 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥 ↔ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3433onnminsb 7732 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ On → (𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥} → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3531, 34syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (rank‘𝑧) → (𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥} → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3629, 35sylcom 30 . . . . . . . . . . . . . . . . 17 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank‘𝑧) → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3721, 36syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑅1𝑥) → (𝑤 ∈ (rank‘𝑧) → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3837imp 406 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤)
39 rexnal 3084 . . . . . . . . . . . . . . 15 (∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤 ↔ ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤)
4038, 39sylibr 234 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) → ∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤)
4140adantl 481 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤)
42 r19.29 3095 . . . . . . . . . . . . 13 ((∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤) → ∃𝑢𝑧 ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤))
4326, 41, 42syl2anc 584 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∃𝑢𝑧 ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤))
44 simp2 1137 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → 𝑢𝑧)
45 tcid 9627 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ V → 𝑧 ⊆ (TC‘𝑧))
4645elv 3441 . . . . . . . . . . . . . . . 16 𝑧 ⊆ (TC‘𝑧)
4746sseli 3925 . . . . . . . . . . . . . . 15 (𝑢𝑧𝑢 ∈ (TC‘𝑧))
48 fveqeq2 6831 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → ((rank‘𝑥) = 𝑤 ↔ (rank‘𝑢) = 𝑤))
4948rspcev 3572 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (TC‘𝑧) ∧ (rank‘𝑢) = 𝑤) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤)
5049ex 412 . . . . . . . . . . . . . . 15 (𝑢 ∈ (TC‘𝑧) → ((rank‘𝑢) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
5144, 47, 503syl 18 . . . . . . . . . . . . . 14 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ((rank‘𝑢) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
52 simp3l 1202 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
5352sseld 3928 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (𝑤 ∈ (rank‘𝑢) → 𝑤 ∈ (rank “ (TC‘𝑢))))
54 simp1l 1198 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → 𝑧 ∈ (𝑅1𝑥))
55 rankf 9687 . . . . . . . . . . . . . . . . . . 19 rank: (𝑅1 “ On)⟶On
56 ffn 6651 . . . . . . . . . . . . . . . . . . 19 (rank: (𝑅1 “ On)⟶On → rank Fn (𝑅1 “ On))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . 18 rank Fn (𝑅1 “ On)
58 r1tr 9669 . . . . . . . . . . . . . . . . . . . 20 Tr (𝑅1𝑥)
59 trel 5204 . . . . . . . . . . . . . . . . . . . 20 (Tr (𝑅1𝑥) → ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → 𝑢 ∈ (𝑅1𝑥)))
6058, 59ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → 𝑢 ∈ (𝑅1𝑥))
61 r1elwf 9689 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝑅1𝑥) → 𝑢 (𝑅1 “ On))
62 tcwf 9776 . . . . . . . . . . . . . . . . . . . 20 (𝑢 (𝑅1 “ On) → (TC‘𝑢) ∈ (𝑅1 “ On))
63 fvex 6835 . . . . . . . . . . . . . . . . . . . . 21 (TC‘𝑢) ∈ V
6463r1elss 9699 . . . . . . . . . . . . . . . . . . . 20 ((TC‘𝑢) ∈ (𝑅1 “ On) ↔ (TC‘𝑢) ⊆ (𝑅1 “ On))
6562, 64sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝑢 (𝑅1 “ On) → (TC‘𝑢) ⊆ (𝑅1 “ On))
6660, 61, 653syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (TC‘𝑢) ⊆ (𝑅1 “ On))
67 fvelimab 6894 . . . . . . . . . . . . . . . . . 18 ((rank Fn (𝑅1 “ On) ∧ (TC‘𝑢) ⊆ (𝑅1 “ On)) → (𝑤 ∈ (rank “ (TC‘𝑢)) ↔ ∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤))
6857, 66, 67sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank “ (TC‘𝑢)) ↔ ∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤))
69 vex 3440 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
7069tcel 9633 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑧 → (TC‘𝑢) ⊆ (TC‘𝑧))
71 ssrexv 3999 . . . . . . . . . . . . . . . . . . 19 ((TC‘𝑢) ⊆ (TC‘𝑧) → (∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7270, 71syl 17 . . . . . . . . . . . . . . . . . 18 (𝑢𝑧 → (∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7372adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7468, 73sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank “ (TC‘𝑢)) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7544, 54, 74syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (𝑤 ∈ (rank “ (TC‘𝑢)) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7653, 75syld 47 . . . . . . . . . . . . . 14 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (𝑤 ∈ (rank‘𝑢) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
77 rankon 9688 . . . . . . . . . . . . . . . . . . 19 (rank‘𝑢) ∈ On
78 eloni 6316 . . . . . . . . . . . . . . . . . . . 20 ((rank‘𝑢) ∈ On → Ord (rank‘𝑢))
79 eloni 6316 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ On → Ord 𝑤)
80 ordtri3or 6338 . . . . . . . . . . . . . . . . . . . 20 ((Ord (rank‘𝑢) ∧ Ord 𝑤) → ((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8178, 79, 80syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((rank‘𝑢) ∈ On ∧ 𝑤 ∈ On) → ((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8277, 31, 81sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (rank‘𝑧) → ((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
83 3orass 1089 . . . . . . . . . . . . . . . . . 18 (((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)) ↔ ((rank‘𝑢) ∈ 𝑤 ∨ ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢))))
8482, 83sylib 218 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (rank‘𝑧) → ((rank‘𝑢) ∈ 𝑤 ∨ ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢))))
8584orcanai 1004 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (rank‘𝑧) ∧ ¬ (rank‘𝑢) ∈ 𝑤) → ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8685ad2ant2l 746 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
87863adant2 1131 . . . . . . . . . . . . . 14 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8851, 76, 87mpjaod 860 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤)
8988rexlimdv3a 3137 . . . . . . . . . . . 12 ((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) → (∃𝑢𝑧 ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9013, 43, 89sylc 65 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤)
9190expr 456 . . . . . . . . . 10 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank‘𝑧) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
92 tcwf 9776 . . . . . . . . . . . . 13 (𝑧 (𝑅1 “ On) → (TC‘𝑧) ∈ (𝑅1 “ On))
93 r1elssi 9698 . . . . . . . . . . . . . 14 ((TC‘𝑧) ∈ (𝑅1 “ On) → (TC‘𝑧) ⊆ (𝑅1 “ On))
94 fvelimab 6894 . . . . . . . . . . . . . 14 ((rank Fn (𝑅1 “ On) ∧ (TC‘𝑧) ⊆ (𝑅1 “ On)) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9593, 94sylan2 593 . . . . . . . . . . . . 13 ((rank Fn (𝑅1 “ On) ∧ (TC‘𝑧) ∈ (𝑅1 “ On)) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9657, 92, 95sylancr 587 . . . . . . . . . . . 12 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9721, 96syl 17 . . . . . . . . . . 11 (𝑧 ∈ (𝑅1𝑥) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9897adantl 481 . . . . . . . . . 10 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9991, 98sylibrd 259 . . . . . . . . 9 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank‘𝑧) → 𝑤 ∈ (rank “ (TC‘𝑧))))
10099ssrdv 3935 . . . . . . . 8 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (rank‘𝑧) ⊆ (rank “ (TC‘𝑧)))
101100ralrimiva 3124 . . . . . . 7 ((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) → ∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)))
102101ex 412 . . . . . 6 (𝑥 ∈ On → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧))))
10310, 12, 102tfis3 7788 . . . . 5 (suc 𝑦 ∈ On → ∀𝑧 ∈ (𝑅1‘suc 𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)))
104 fveq2 6822 . . . . . . 7 (𝑧 = 𝐴 → (rank‘𝑧) = (rank‘𝐴))
105 fveq2 6822 . . . . . . . 8 (𝑧 = 𝐴 → (TC‘𝑧) = (TC‘𝐴))
106105imaeq2d 6008 . . . . . . 7 (𝑧 = 𝐴 → (rank “ (TC‘𝑧)) = (rank “ (TC‘𝐴)))
107104, 106sseq12d 3963 . . . . . 6 (𝑧 = 𝐴 → ((rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ (rank‘𝐴) ⊆ (rank “ (TC‘𝐴))))
108107rspccv 3569 . . . . 5 (∀𝑧 ∈ (𝑅1‘suc 𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) → (𝐴 ∈ (𝑅1‘suc 𝑦) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴))))
1092, 103, 1083syl 18 . . . 4 (𝑦 ∈ On → (𝐴 ∈ (𝑅1‘suc 𝑦) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴))))
110109rexlimiv 3126 . . 3 (∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑦) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴)))
1111, 110sylbi 217 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴)))
112 tcvalg 9626 . . . 4 (𝐴 (𝑅1 “ On) → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
113 r1rankidb 9697 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
114 r1tr 9669 . . . . 5 Tr (𝑅1‘(rank‘𝐴))
115 fvex 6835 . . . . . . 7 (𝑅1‘(rank‘𝐴)) ∈ V
116 sseq2 3956 . . . . . . . 8 (𝑥 = (𝑅1‘(rank‘𝐴)) → (𝐴𝑥𝐴 ⊆ (𝑅1‘(rank‘𝐴))))
117 treq 5203 . . . . . . . 8 (𝑥 = (𝑅1‘(rank‘𝐴)) → (Tr 𝑥 ↔ Tr (𝑅1‘(rank‘𝐴))))
118116, 117anbi12d 632 . . . . . . 7 (𝑥 = (𝑅1‘(rank‘𝐴)) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ∧ Tr (𝑅1‘(rank‘𝐴)))))
119115, 118elab 3630 . . . . . 6 ((𝑅1‘(rank‘𝐴)) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ∧ Tr (𝑅1‘(rank‘𝐴))))
120 intss1 4911 . . . . . 6 ((𝑅1‘(rank‘𝐴)) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ (𝑅1‘(rank‘𝐴)))
121119, 120sylbir 235 . . . . 5 ((𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ∧ Tr (𝑅1‘(rank‘𝐴))) → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ (𝑅1‘(rank‘𝐴)))
122113, 114, 121sylancl 586 . . . 4 (𝐴 (𝑅1 “ On) → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ (𝑅1‘(rank‘𝐴)))
123112, 122eqsstrd 3964 . . 3 (𝐴 (𝑅1 “ On) → (TC‘𝐴) ⊆ (𝑅1‘(rank‘𝐴)))
124 imass2 6050 . . . 4 ((TC‘𝐴) ⊆ (𝑅1‘(rank‘𝐴)) → (rank “ (TC‘𝐴)) ⊆ (rank “ (𝑅1‘(rank‘𝐴))))
125 ffun 6654 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → Fun rank)
12655, 125ax-mp 5 . . . . . . 7 Fun rank
127 fvelima 6887 . . . . . . 7 ((Fun rank ∧ 𝑥 ∈ (rank “ (𝑅1‘(rank‘𝐴)))) → ∃𝑦 ∈ (𝑅1‘(rank‘𝐴))(rank‘𝑦) = 𝑥)
128126, 127mpan 690 . . . . . 6 (𝑥 ∈ (rank “ (𝑅1‘(rank‘𝐴))) → ∃𝑦 ∈ (𝑅1‘(rank‘𝐴))(rank‘𝑦) = 𝑥)
129 rankr1ai 9691 . . . . . . . 8 (𝑦 ∈ (𝑅1‘(rank‘𝐴)) → (rank‘𝑦) ∈ (rank‘𝐴))
130 eleq1 2819 . . . . . . . 8 ((rank‘𝑦) = 𝑥 → ((rank‘𝑦) ∈ (rank‘𝐴) ↔ 𝑥 ∈ (rank‘𝐴)))
131129, 130syl5ibcom 245 . . . . . . 7 (𝑦 ∈ (𝑅1‘(rank‘𝐴)) → ((rank‘𝑦) = 𝑥𝑥 ∈ (rank‘𝐴)))
132131rexlimiv 3126 . . . . . 6 (∃𝑦 ∈ (𝑅1‘(rank‘𝐴))(rank‘𝑦) = 𝑥𝑥 ∈ (rank‘𝐴))
133128, 132syl 17 . . . . 5 (𝑥 ∈ (rank “ (𝑅1‘(rank‘𝐴))) → 𝑥 ∈ (rank‘𝐴))
134133ssriv 3933 . . . 4 (rank “ (𝑅1‘(rank‘𝐴))) ⊆ (rank‘𝐴)
135124, 134sstrdi 3942 . . 3 ((TC‘𝐴) ⊆ (𝑅1‘(rank‘𝐴)) → (rank “ (TC‘𝐴)) ⊆ (rank‘𝐴))
136123, 135syl 17 . 2 (𝐴 (𝑅1 “ On) → (rank “ (TC‘𝐴)) ⊆ (rank‘𝐴))
137111, 136eqssd 3947 1 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = (rank “ (TC‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897   cuni 4856   cint 4895  Tr wtr 5196  cima 5617  Ord word 6305  Oncon0 6306  suc csuc 6308  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  TCctc 9624  𝑅1cr1 9655  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-tc 9625  df-r1 9657  df-rank 9658
This theorem is referenced by:  hsmexlem5  10321  grur1  10711
  Copyright terms: Public domain W3C validator