MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcrank Structured version   Visualization version   GIF version

Theorem tcrank 9837
Description: This theorem expresses two different facts from the two subset implications in this equality. In the forward direction, it says that the transitive closure has members of every rank below 𝐴. Stated another way, to construct a set at a given rank, you have to climb the entire hierarchy of ordinals below (rank‘𝐴), constructing at least one set at each level in order to move up the ranks. In the reverse direction, it says that every member of (TC‘𝐴) has a rank below the rank of 𝐴, since intuitively it contains only the members of 𝐴 and the members of those and so on, but nothing "bigger" than 𝐴. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcrank (𝐴 (𝑅1 “ On) → (rank‘𝐴) = (rank “ (TC‘𝐴)))

Proof of Theorem tcrank
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankwflemb 9746 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑦))
2 onsuc 7787 . . . . 5 (𝑦 ∈ On → suc 𝑦 ∈ On)
3 fveq2 6858 . . . . . . . 8 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
43raleqdv 3299 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑧 ∈ (𝑅1𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧))))
5 fveq2 6858 . . . . . . . . 9 (𝑧 = 𝑢 → (rank‘𝑧) = (rank‘𝑢))
6 fveq2 6858 . . . . . . . . . 10 (𝑧 = 𝑢 → (TC‘𝑧) = (TC‘𝑢))
76imaeq2d 6031 . . . . . . . . 9 (𝑧 = 𝑢 → (rank “ (TC‘𝑧)) = (rank “ (TC‘𝑢)))
85, 7sseq12d 3980 . . . . . . . 8 (𝑧 = 𝑢 → ((rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
98cbvralvw 3215 . . . . . . 7 (∀𝑧 ∈ (𝑅1𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
104, 9bitrdi 287 . . . . . 6 (𝑥 = 𝑦 → (∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
11 fveq2 6858 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
1211raleqdv 3299 . . . . . 6 (𝑥 = suc 𝑦 → (∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑧 ∈ (𝑅1‘suc 𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧))))
13 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)))
14 simprl 770 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → 𝑧 ∈ (𝑅1𝑥))
15 simplr 768 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
16 rankr1ai 9751 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑅1𝑥) → (rank‘𝑧) ∈ 𝑥)
17 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑦 = (rank‘𝑧) → (𝑅1𝑦) = (𝑅1‘(rank‘𝑧)))
1817raleqdv 3299 . . . . . . . . . . . . . . . . 17 (𝑦 = (rank‘𝑧) → (∀𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ↔ ∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
1918rspcv 3584 . . . . . . . . . . . . . . . 16 ((rank‘𝑧) ∈ 𝑥 → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2016, 19syl 17 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝑅1𝑥) → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
21 r1elwf 9749 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑅1𝑥) → 𝑧 (𝑅1 “ On))
22 r1rankidb 9757 . . . . . . . . . . . . . . . 16 (𝑧 (𝑅1 “ On) → 𝑧 ⊆ (𝑅1‘(rank‘𝑧)))
23 ssralv 4015 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑅1‘(rank‘𝑧)) → (∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2421, 22, 233syl 18 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝑅1𝑥) → (∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2520, 24syld 47 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑅1𝑥) → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2614, 15, 25sylc 65 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
27 rankval3b 9779 . . . . . . . . . . . . . . . . . . . 20 (𝑧 (𝑅1 “ On) → (rank‘𝑧) = {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥})
2827eleq2d 2814 . . . . . . . . . . . . . . . . . . 19 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank‘𝑧) ↔ 𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥}))
2928biimpd 229 . . . . . . . . . . . . . . . . . 18 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank‘𝑧) → 𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥}))
30 rankon 9748 . . . . . . . . . . . . . . . . . . . 20 (rank‘𝑧) ∈ On
3130oneli 6448 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (rank‘𝑧) → 𝑤 ∈ On)
32 eleq2w 2812 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((rank‘𝑢) ∈ 𝑥 ↔ (rank‘𝑢) ∈ 𝑤))
3332ralbidv 3156 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥 ↔ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3433onnminsb 7775 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ On → (𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥} → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3531, 34syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (rank‘𝑧) → (𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥} → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3629, 35sylcom 30 . . . . . . . . . . . . . . . . 17 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank‘𝑧) → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3721, 36syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑅1𝑥) → (𝑤 ∈ (rank‘𝑧) → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3837imp 406 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤)
39 rexnal 3082 . . . . . . . . . . . . . . 15 (∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤 ↔ ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤)
4038, 39sylibr 234 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) → ∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤)
4140adantl 481 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤)
42 r19.29 3094 . . . . . . . . . . . . 13 ((∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤) → ∃𝑢𝑧 ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤))
4326, 41, 42syl2anc 584 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∃𝑢𝑧 ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤))
44 simp2 1137 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → 𝑢𝑧)
45 tcid 9692 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ V → 𝑧 ⊆ (TC‘𝑧))
4645elv 3452 . . . . . . . . . . . . . . . 16 𝑧 ⊆ (TC‘𝑧)
4746sseli 3942 . . . . . . . . . . . . . . 15 (𝑢𝑧𝑢 ∈ (TC‘𝑧))
48 fveqeq2 6867 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → ((rank‘𝑥) = 𝑤 ↔ (rank‘𝑢) = 𝑤))
4948rspcev 3588 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (TC‘𝑧) ∧ (rank‘𝑢) = 𝑤) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤)
5049ex 412 . . . . . . . . . . . . . . 15 (𝑢 ∈ (TC‘𝑧) → ((rank‘𝑢) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
5144, 47, 503syl 18 . . . . . . . . . . . . . 14 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ((rank‘𝑢) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
52 simp3l 1202 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
5352sseld 3945 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (𝑤 ∈ (rank‘𝑢) → 𝑤 ∈ (rank “ (TC‘𝑢))))
54 simp1l 1198 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → 𝑧 ∈ (𝑅1𝑥))
55 rankf 9747 . . . . . . . . . . . . . . . . . . 19 rank: (𝑅1 “ On)⟶On
56 ffn 6688 . . . . . . . . . . . . . . . . . . 19 (rank: (𝑅1 “ On)⟶On → rank Fn (𝑅1 “ On))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . 18 rank Fn (𝑅1 “ On)
58 r1tr 9729 . . . . . . . . . . . . . . . . . . . 20 Tr (𝑅1𝑥)
59 trel 5223 . . . . . . . . . . . . . . . . . . . 20 (Tr (𝑅1𝑥) → ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → 𝑢 ∈ (𝑅1𝑥)))
6058, 59ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → 𝑢 ∈ (𝑅1𝑥))
61 r1elwf 9749 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝑅1𝑥) → 𝑢 (𝑅1 “ On))
62 tcwf 9836 . . . . . . . . . . . . . . . . . . . 20 (𝑢 (𝑅1 “ On) → (TC‘𝑢) ∈ (𝑅1 “ On))
63 fvex 6871 . . . . . . . . . . . . . . . . . . . . 21 (TC‘𝑢) ∈ V
6463r1elss 9759 . . . . . . . . . . . . . . . . . . . 20 ((TC‘𝑢) ∈ (𝑅1 “ On) ↔ (TC‘𝑢) ⊆ (𝑅1 “ On))
6562, 64sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝑢 (𝑅1 “ On) → (TC‘𝑢) ⊆ (𝑅1 “ On))
6660, 61, 653syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (TC‘𝑢) ⊆ (𝑅1 “ On))
67 fvelimab 6933 . . . . . . . . . . . . . . . . . 18 ((rank Fn (𝑅1 “ On) ∧ (TC‘𝑢) ⊆ (𝑅1 “ On)) → (𝑤 ∈ (rank “ (TC‘𝑢)) ↔ ∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤))
6857, 66, 67sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank “ (TC‘𝑢)) ↔ ∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤))
69 vex 3451 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
7069tcel 9698 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑧 → (TC‘𝑢) ⊆ (TC‘𝑧))
71 ssrexv 4016 . . . . . . . . . . . . . . . . . . 19 ((TC‘𝑢) ⊆ (TC‘𝑧) → (∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7270, 71syl 17 . . . . . . . . . . . . . . . . . 18 (𝑢𝑧 → (∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7372adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7468, 73sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank “ (TC‘𝑢)) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7544, 54, 74syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (𝑤 ∈ (rank “ (TC‘𝑢)) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7653, 75syld 47 . . . . . . . . . . . . . 14 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (𝑤 ∈ (rank‘𝑢) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
77 rankon 9748 . . . . . . . . . . . . . . . . . . 19 (rank‘𝑢) ∈ On
78 eloni 6342 . . . . . . . . . . . . . . . . . . . 20 ((rank‘𝑢) ∈ On → Ord (rank‘𝑢))
79 eloni 6342 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ On → Ord 𝑤)
80 ordtri3or 6364 . . . . . . . . . . . . . . . . . . . 20 ((Ord (rank‘𝑢) ∧ Ord 𝑤) → ((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8178, 79, 80syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((rank‘𝑢) ∈ On ∧ 𝑤 ∈ On) → ((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8277, 31, 81sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (rank‘𝑧) → ((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
83 3orass 1089 . . . . . . . . . . . . . . . . . 18 (((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)) ↔ ((rank‘𝑢) ∈ 𝑤 ∨ ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢))))
8482, 83sylib 218 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (rank‘𝑧) → ((rank‘𝑢) ∈ 𝑤 ∨ ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢))))
8584orcanai 1004 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (rank‘𝑧) ∧ ¬ (rank‘𝑢) ∈ 𝑤) → ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8685ad2ant2l 746 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
87863adant2 1131 . . . . . . . . . . . . . 14 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8851, 76, 87mpjaod 860 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤)
8988rexlimdv3a 3138 . . . . . . . . . . . 12 ((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) → (∃𝑢𝑧 ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9013, 43, 89sylc 65 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤)
9190expr 456 . . . . . . . . . 10 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank‘𝑧) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
92 tcwf 9836 . . . . . . . . . . . . 13 (𝑧 (𝑅1 “ On) → (TC‘𝑧) ∈ (𝑅1 “ On))
93 r1elssi 9758 . . . . . . . . . . . . . 14 ((TC‘𝑧) ∈ (𝑅1 “ On) → (TC‘𝑧) ⊆ (𝑅1 “ On))
94 fvelimab 6933 . . . . . . . . . . . . . 14 ((rank Fn (𝑅1 “ On) ∧ (TC‘𝑧) ⊆ (𝑅1 “ On)) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9593, 94sylan2 593 . . . . . . . . . . . . 13 ((rank Fn (𝑅1 “ On) ∧ (TC‘𝑧) ∈ (𝑅1 “ On)) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9657, 92, 95sylancr 587 . . . . . . . . . . . 12 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9721, 96syl 17 . . . . . . . . . . 11 (𝑧 ∈ (𝑅1𝑥) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9897adantl 481 . . . . . . . . . 10 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9991, 98sylibrd 259 . . . . . . . . 9 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank‘𝑧) → 𝑤 ∈ (rank “ (TC‘𝑧))))
10099ssrdv 3952 . . . . . . . 8 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (rank‘𝑧) ⊆ (rank “ (TC‘𝑧)))
101100ralrimiva 3125 . . . . . . 7 ((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) → ∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)))
102101ex 412 . . . . . 6 (𝑥 ∈ On → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧))))
10310, 12, 102tfis3 7834 . . . . 5 (suc 𝑦 ∈ On → ∀𝑧 ∈ (𝑅1‘suc 𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)))
104 fveq2 6858 . . . . . . 7 (𝑧 = 𝐴 → (rank‘𝑧) = (rank‘𝐴))
105 fveq2 6858 . . . . . . . 8 (𝑧 = 𝐴 → (TC‘𝑧) = (TC‘𝐴))
106105imaeq2d 6031 . . . . . . 7 (𝑧 = 𝐴 → (rank “ (TC‘𝑧)) = (rank “ (TC‘𝐴)))
107104, 106sseq12d 3980 . . . . . 6 (𝑧 = 𝐴 → ((rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ (rank‘𝐴) ⊆ (rank “ (TC‘𝐴))))
108107rspccv 3585 . . . . 5 (∀𝑧 ∈ (𝑅1‘suc 𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) → (𝐴 ∈ (𝑅1‘suc 𝑦) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴))))
1092, 103, 1083syl 18 . . . 4 (𝑦 ∈ On → (𝐴 ∈ (𝑅1‘suc 𝑦) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴))))
110109rexlimiv 3127 . . 3 (∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑦) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴)))
1111, 110sylbi 217 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴)))
112 tcvalg 9691 . . . 4 (𝐴 (𝑅1 “ On) → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
113 r1rankidb 9757 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
114 r1tr 9729 . . . . 5 Tr (𝑅1‘(rank‘𝐴))
115 fvex 6871 . . . . . . 7 (𝑅1‘(rank‘𝐴)) ∈ V
116 sseq2 3973 . . . . . . . 8 (𝑥 = (𝑅1‘(rank‘𝐴)) → (𝐴𝑥𝐴 ⊆ (𝑅1‘(rank‘𝐴))))
117 treq 5222 . . . . . . . 8 (𝑥 = (𝑅1‘(rank‘𝐴)) → (Tr 𝑥 ↔ Tr (𝑅1‘(rank‘𝐴))))
118116, 117anbi12d 632 . . . . . . 7 (𝑥 = (𝑅1‘(rank‘𝐴)) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ∧ Tr (𝑅1‘(rank‘𝐴)))))
119115, 118elab 3646 . . . . . 6 ((𝑅1‘(rank‘𝐴)) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ∧ Tr (𝑅1‘(rank‘𝐴))))
120 intss1 4927 . . . . . 6 ((𝑅1‘(rank‘𝐴)) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ (𝑅1‘(rank‘𝐴)))
121119, 120sylbir 235 . . . . 5 ((𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ∧ Tr (𝑅1‘(rank‘𝐴))) → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ (𝑅1‘(rank‘𝐴)))
122113, 114, 121sylancl 586 . . . 4 (𝐴 (𝑅1 “ On) → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ (𝑅1‘(rank‘𝐴)))
123112, 122eqsstrd 3981 . . 3 (𝐴 (𝑅1 “ On) → (TC‘𝐴) ⊆ (𝑅1‘(rank‘𝐴)))
124 imass2 6073 . . . 4 ((TC‘𝐴) ⊆ (𝑅1‘(rank‘𝐴)) → (rank “ (TC‘𝐴)) ⊆ (rank “ (𝑅1‘(rank‘𝐴))))
125 ffun 6691 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → Fun rank)
12655, 125ax-mp 5 . . . . . . 7 Fun rank
127 fvelima 6926 . . . . . . 7 ((Fun rank ∧ 𝑥 ∈ (rank “ (𝑅1‘(rank‘𝐴)))) → ∃𝑦 ∈ (𝑅1‘(rank‘𝐴))(rank‘𝑦) = 𝑥)
128126, 127mpan 690 . . . . . 6 (𝑥 ∈ (rank “ (𝑅1‘(rank‘𝐴))) → ∃𝑦 ∈ (𝑅1‘(rank‘𝐴))(rank‘𝑦) = 𝑥)
129 rankr1ai 9751 . . . . . . . 8 (𝑦 ∈ (𝑅1‘(rank‘𝐴)) → (rank‘𝑦) ∈ (rank‘𝐴))
130 eleq1 2816 . . . . . . . 8 ((rank‘𝑦) = 𝑥 → ((rank‘𝑦) ∈ (rank‘𝐴) ↔ 𝑥 ∈ (rank‘𝐴)))
131129, 130syl5ibcom 245 . . . . . . 7 (𝑦 ∈ (𝑅1‘(rank‘𝐴)) → ((rank‘𝑦) = 𝑥𝑥 ∈ (rank‘𝐴)))
132131rexlimiv 3127 . . . . . 6 (∃𝑦 ∈ (𝑅1‘(rank‘𝐴))(rank‘𝑦) = 𝑥𝑥 ∈ (rank‘𝐴))
133128, 132syl 17 . . . . 5 (𝑥 ∈ (rank “ (𝑅1‘(rank‘𝐴))) → 𝑥 ∈ (rank‘𝐴))
134133ssriv 3950 . . . 4 (rank “ (𝑅1‘(rank‘𝐴))) ⊆ (rank‘𝐴)
135124, 134sstrdi 3959 . . 3 ((TC‘𝐴) ⊆ (𝑅1‘(rank‘𝐴)) → (rank “ (TC‘𝐴)) ⊆ (rank‘𝐴))
136123, 135syl 17 . 2 (𝐴 (𝑅1 “ On) → (rank “ (TC‘𝐴)) ⊆ (rank‘𝐴))
137111, 136eqssd 3964 1 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = (rank “ (TC‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914   cuni 4871   cint 4910  Tr wtr 5214  cima 5641  Ord word 6331  Oncon0 6332  suc csuc 6334  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  TCctc 9689  𝑅1cr1 9715  rankcrnk 9716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-tc 9690  df-r1 9717  df-rank 9718
This theorem is referenced by:  hsmexlem5  10383  grur1  10773
  Copyright terms: Public domain W3C validator