MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcrank Structured version   Visualization version   GIF version

Theorem tcrank 9780
Description: This theorem expresses two different facts from the two subset implications in this equality. In the forward direction, it says that the transitive closure has members of every rank below 𝐴. Stated another way, to construct a set at a given rank, you have to climb the entire hierarchy of ordinals below (rank‘𝐴), constructing at least one set at each level in order to move up the ranks. In the reverse direction, it says that every member of (TC‘𝐴) has a rank below the rank of 𝐴, since intuitively it contains only the members of 𝐴 and the members of those and so on, but nothing "bigger" than 𝐴. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcrank (𝐴 (𝑅1 “ On) → (rank‘𝐴) = (rank “ (TC‘𝐴)))

Proof of Theorem tcrank
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankwflemb 9689 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑦))
2 onsuc 7746 . . . . 5 (𝑦 ∈ On → suc 𝑦 ∈ On)
3 fveq2 6822 . . . . . . . 8 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
43raleqdv 3289 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑧 ∈ (𝑅1𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧))))
5 fveq2 6822 . . . . . . . . 9 (𝑧 = 𝑢 → (rank‘𝑧) = (rank‘𝑢))
6 fveq2 6822 . . . . . . . . . 10 (𝑧 = 𝑢 → (TC‘𝑧) = (TC‘𝑢))
76imaeq2d 6011 . . . . . . . . 9 (𝑧 = 𝑢 → (rank “ (TC‘𝑧)) = (rank “ (TC‘𝑢)))
85, 7sseq12d 3969 . . . . . . . 8 (𝑧 = 𝑢 → ((rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
98cbvralvw 3207 . . . . . . 7 (∀𝑧 ∈ (𝑅1𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
104, 9bitrdi 287 . . . . . 6 (𝑥 = 𝑦 → (∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
11 fveq2 6822 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
1211raleqdv 3289 . . . . . 6 (𝑥 = suc 𝑦 → (∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ ∀𝑧 ∈ (𝑅1‘suc 𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧))))
13 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)))
14 simprl 770 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → 𝑧 ∈ (𝑅1𝑥))
15 simplr 768 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
16 rankr1ai 9694 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑅1𝑥) → (rank‘𝑧) ∈ 𝑥)
17 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑦 = (rank‘𝑧) → (𝑅1𝑦) = (𝑅1‘(rank‘𝑧)))
1817raleqdv 3289 . . . . . . . . . . . . . . . . 17 (𝑦 = (rank‘𝑧) → (∀𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ↔ ∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
1918rspcv 3573 . . . . . . . . . . . . . . . 16 ((rank‘𝑧) ∈ 𝑥 → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2016, 19syl 17 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝑅1𝑥) → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
21 r1elwf 9692 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑅1𝑥) → 𝑧 (𝑅1 “ On))
22 r1rankidb 9700 . . . . . . . . . . . . . . . 16 (𝑧 (𝑅1 “ On) → 𝑧 ⊆ (𝑅1‘(rank‘𝑧)))
23 ssralv 4004 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑅1‘(rank‘𝑧)) → (∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2421, 22, 233syl 18 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝑅1𝑥) → (∀𝑢 ∈ (𝑅1‘(rank‘𝑧))(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2520, 24syld 47 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑅1𝑥) → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢))))
2614, 15, 25sylc 65 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
27 rankval3b 9722 . . . . . . . . . . . . . . . . . . . 20 (𝑧 (𝑅1 “ On) → (rank‘𝑧) = {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥})
2827eleq2d 2814 . . . . . . . . . . . . . . . . . . 19 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank‘𝑧) ↔ 𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥}))
2928biimpd 229 . . . . . . . . . . . . . . . . . 18 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank‘𝑧) → 𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥}))
30 rankon 9691 . . . . . . . . . . . . . . . . . . . 20 (rank‘𝑧) ∈ On
3130oneli 6422 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (rank‘𝑧) → 𝑤 ∈ On)
32 eleq2w 2812 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → ((rank‘𝑢) ∈ 𝑥 ↔ (rank‘𝑢) ∈ 𝑤))
3332ralbidv 3152 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥 ↔ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3433onnminsb 7735 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ On → (𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥} → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3531, 34syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (rank‘𝑧) → (𝑤 {𝑥 ∈ On ∣ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑥} → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3629, 35sylcom 30 . . . . . . . . . . . . . . . . 17 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank‘𝑧) → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3721, 36syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑅1𝑥) → (𝑤 ∈ (rank‘𝑧) → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤))
3837imp 406 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) → ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤)
39 rexnal 3081 . . . . . . . . . . . . . . 15 (∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤 ↔ ¬ ∀𝑢𝑧 (rank‘𝑢) ∈ 𝑤)
4038, 39sylibr 234 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) → ∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤)
4140adantl 481 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤)
42 r19.29 3092 . . . . . . . . . . . . 13 ((∀𝑢𝑧 (rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ∃𝑢𝑧 ¬ (rank‘𝑢) ∈ 𝑤) → ∃𝑢𝑧 ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤))
4326, 41, 42syl2anc 584 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∃𝑢𝑧 ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤))
44 simp2 1137 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → 𝑢𝑧)
45 tcid 9635 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ V → 𝑧 ⊆ (TC‘𝑧))
4645elv 3441 . . . . . . . . . . . . . . . 16 𝑧 ⊆ (TC‘𝑧)
4746sseli 3931 . . . . . . . . . . . . . . 15 (𝑢𝑧𝑢 ∈ (TC‘𝑧))
48 fveqeq2 6831 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → ((rank‘𝑥) = 𝑤 ↔ (rank‘𝑢) = 𝑤))
4948rspcev 3577 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (TC‘𝑧) ∧ (rank‘𝑢) = 𝑤) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤)
5049ex 412 . . . . . . . . . . . . . . 15 (𝑢 ∈ (TC‘𝑧) → ((rank‘𝑢) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
5144, 47, 503syl 18 . . . . . . . . . . . . . 14 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ((rank‘𝑢) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
52 simp3l 1202 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (rank‘𝑢) ⊆ (rank “ (TC‘𝑢)))
5352sseld 3934 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (𝑤 ∈ (rank‘𝑢) → 𝑤 ∈ (rank “ (TC‘𝑢))))
54 simp1l 1198 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → 𝑧 ∈ (𝑅1𝑥))
55 rankf 9690 . . . . . . . . . . . . . . . . . . 19 rank: (𝑅1 “ On)⟶On
56 ffn 6652 . . . . . . . . . . . . . . . . . . 19 (rank: (𝑅1 “ On)⟶On → rank Fn (𝑅1 “ On))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . 18 rank Fn (𝑅1 “ On)
58 r1tr 9672 . . . . . . . . . . . . . . . . . . . 20 Tr (𝑅1𝑥)
59 trel 5207 . . . . . . . . . . . . . . . . . . . 20 (Tr (𝑅1𝑥) → ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → 𝑢 ∈ (𝑅1𝑥)))
6058, 59ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → 𝑢 ∈ (𝑅1𝑥))
61 r1elwf 9692 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝑅1𝑥) → 𝑢 (𝑅1 “ On))
62 tcwf 9779 . . . . . . . . . . . . . . . . . . . 20 (𝑢 (𝑅1 “ On) → (TC‘𝑢) ∈ (𝑅1 “ On))
63 fvex 6835 . . . . . . . . . . . . . . . . . . . . 21 (TC‘𝑢) ∈ V
6463r1elss 9702 . . . . . . . . . . . . . . . . . . . 20 ((TC‘𝑢) ∈ (𝑅1 “ On) ↔ (TC‘𝑢) ⊆ (𝑅1 “ On))
6562, 64sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝑢 (𝑅1 “ On) → (TC‘𝑢) ⊆ (𝑅1 “ On))
6660, 61, 653syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (TC‘𝑢) ⊆ (𝑅1 “ On))
67 fvelimab 6895 . . . . . . . . . . . . . . . . . 18 ((rank Fn (𝑅1 “ On) ∧ (TC‘𝑢) ⊆ (𝑅1 “ On)) → (𝑤 ∈ (rank “ (TC‘𝑢)) ↔ ∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤))
6857, 66, 67sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank “ (TC‘𝑢)) ↔ ∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤))
69 vex 3440 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
7069tcel 9641 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑧 → (TC‘𝑢) ⊆ (TC‘𝑧))
71 ssrexv 4005 . . . . . . . . . . . . . . . . . . 19 ((TC‘𝑢) ⊆ (TC‘𝑧) → (∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7270, 71syl 17 . . . . . . . . . . . . . . . . . 18 (𝑢𝑧 → (∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7372adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (∃𝑥 ∈ (TC‘𝑢)(rank‘𝑥) = 𝑤 → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7468, 73sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑢𝑧𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank “ (TC‘𝑢)) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7544, 54, 74syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (𝑤 ∈ (rank “ (TC‘𝑢)) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
7653, 75syld 47 . . . . . . . . . . . . . 14 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → (𝑤 ∈ (rank‘𝑢) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
77 rankon 9691 . . . . . . . . . . . . . . . . . . 19 (rank‘𝑢) ∈ On
78 eloni 6317 . . . . . . . . . . . . . . . . . . . 20 ((rank‘𝑢) ∈ On → Ord (rank‘𝑢))
79 eloni 6317 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ On → Ord 𝑤)
80 ordtri3or 6339 . . . . . . . . . . . . . . . . . . . 20 ((Ord (rank‘𝑢) ∧ Ord 𝑤) → ((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8178, 79, 80syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((rank‘𝑢) ∈ On ∧ 𝑤 ∈ On) → ((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8277, 31, 81sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (rank‘𝑧) → ((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
83 3orass 1089 . . . . . . . . . . . . . . . . . 18 (((rank‘𝑢) ∈ 𝑤 ∨ (rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)) ↔ ((rank‘𝑢) ∈ 𝑤 ∨ ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢))))
8482, 83sylib 218 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (rank‘𝑧) → ((rank‘𝑢) ∈ 𝑤 ∨ ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢))))
8584orcanai 1004 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (rank‘𝑧) ∧ ¬ (rank‘𝑢) ∈ 𝑤) → ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8685ad2ant2l 746 . . . . . . . . . . . . . . 15 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
87863adant2 1131 . . . . . . . . . . . . . 14 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ((rank‘𝑢) = 𝑤𝑤 ∈ (rank‘𝑢)))
8851, 76, 87mpjaod 860 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) ∧ 𝑢𝑧 ∧ ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤)) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤)
8988rexlimdv3a 3134 . . . . . . . . . . . 12 ((𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧)) → (∃𝑢𝑧 ((rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) ∧ ¬ (rank‘𝑢) ∈ 𝑤) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9013, 43, 89sylc 65 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ (𝑧 ∈ (𝑅1𝑥) ∧ 𝑤 ∈ (rank‘𝑧))) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤)
9190expr 456 . . . . . . . . . 10 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank‘𝑧) → ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
92 tcwf 9779 . . . . . . . . . . . . 13 (𝑧 (𝑅1 “ On) → (TC‘𝑧) ∈ (𝑅1 “ On))
93 r1elssi 9701 . . . . . . . . . . . . . 14 ((TC‘𝑧) ∈ (𝑅1 “ On) → (TC‘𝑧) ⊆ (𝑅1 “ On))
94 fvelimab 6895 . . . . . . . . . . . . . 14 ((rank Fn (𝑅1 “ On) ∧ (TC‘𝑧) ⊆ (𝑅1 “ On)) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9593, 94sylan2 593 . . . . . . . . . . . . 13 ((rank Fn (𝑅1 “ On) ∧ (TC‘𝑧) ∈ (𝑅1 “ On)) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9657, 92, 95sylancr 587 . . . . . . . . . . . 12 (𝑧 (𝑅1 “ On) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9721, 96syl 17 . . . . . . . . . . 11 (𝑧 ∈ (𝑅1𝑥) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9897adantl 481 . . . . . . . . . 10 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank “ (TC‘𝑧)) ↔ ∃𝑥 ∈ (TC‘𝑧)(rank‘𝑥) = 𝑤))
9991, 98sylibrd 259 . . . . . . . . 9 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (𝑤 ∈ (rank‘𝑧) → 𝑤 ∈ (rank “ (TC‘𝑧))))
10099ssrdv 3941 . . . . . . . 8 (((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) ∧ 𝑧 ∈ (𝑅1𝑥)) → (rank‘𝑧) ⊆ (rank “ (TC‘𝑧)))
101100ralrimiva 3121 . . . . . . 7 ((𝑥 ∈ On ∧ ∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢))) → ∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)))
102101ex 412 . . . . . 6 (𝑥 ∈ On → (∀𝑦𝑥𝑢 ∈ (𝑅1𝑦)(rank‘𝑢) ⊆ (rank “ (TC‘𝑢)) → ∀𝑧 ∈ (𝑅1𝑥)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧))))
10310, 12, 102tfis3 7791 . . . . 5 (suc 𝑦 ∈ On → ∀𝑧 ∈ (𝑅1‘suc 𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)))
104 fveq2 6822 . . . . . . 7 (𝑧 = 𝐴 → (rank‘𝑧) = (rank‘𝐴))
105 fveq2 6822 . . . . . . . 8 (𝑧 = 𝐴 → (TC‘𝑧) = (TC‘𝐴))
106105imaeq2d 6011 . . . . . . 7 (𝑧 = 𝐴 → (rank “ (TC‘𝑧)) = (rank “ (TC‘𝐴)))
107104, 106sseq12d 3969 . . . . . 6 (𝑧 = 𝐴 → ((rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) ↔ (rank‘𝐴) ⊆ (rank “ (TC‘𝐴))))
108107rspccv 3574 . . . . 5 (∀𝑧 ∈ (𝑅1‘suc 𝑦)(rank‘𝑧) ⊆ (rank “ (TC‘𝑧)) → (𝐴 ∈ (𝑅1‘suc 𝑦) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴))))
1092, 103, 1083syl 18 . . . 4 (𝑦 ∈ On → (𝐴 ∈ (𝑅1‘suc 𝑦) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴))))
110109rexlimiv 3123 . . 3 (∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑦) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴)))
1111, 110sylbi 217 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ (rank “ (TC‘𝐴)))
112 tcvalg 9634 . . . 4 (𝐴 (𝑅1 “ On) → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
113 r1rankidb 9700 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
114 r1tr 9672 . . . . 5 Tr (𝑅1‘(rank‘𝐴))
115 fvex 6835 . . . . . . 7 (𝑅1‘(rank‘𝐴)) ∈ V
116 sseq2 3962 . . . . . . . 8 (𝑥 = (𝑅1‘(rank‘𝐴)) → (𝐴𝑥𝐴 ⊆ (𝑅1‘(rank‘𝐴))))
117 treq 5206 . . . . . . . 8 (𝑥 = (𝑅1‘(rank‘𝐴)) → (Tr 𝑥 ↔ Tr (𝑅1‘(rank‘𝐴))))
118116, 117anbi12d 632 . . . . . . 7 (𝑥 = (𝑅1‘(rank‘𝐴)) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ∧ Tr (𝑅1‘(rank‘𝐴)))))
119115, 118elab 3635 . . . . . 6 ((𝑅1‘(rank‘𝐴)) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ∧ Tr (𝑅1‘(rank‘𝐴))))
120 intss1 4913 . . . . . 6 ((𝑅1‘(rank‘𝐴)) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ (𝑅1‘(rank‘𝐴)))
121119, 120sylbir 235 . . . . 5 ((𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ∧ Tr (𝑅1‘(rank‘𝐴))) → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ (𝑅1‘(rank‘𝐴)))
122113, 114, 121sylancl 586 . . . 4 (𝐴 (𝑅1 “ On) → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ (𝑅1‘(rank‘𝐴)))
123112, 122eqsstrd 3970 . . 3 (𝐴 (𝑅1 “ On) → (TC‘𝐴) ⊆ (𝑅1‘(rank‘𝐴)))
124 imass2 6053 . . . 4 ((TC‘𝐴) ⊆ (𝑅1‘(rank‘𝐴)) → (rank “ (TC‘𝐴)) ⊆ (rank “ (𝑅1‘(rank‘𝐴))))
125 ffun 6655 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → Fun rank)
12655, 125ax-mp 5 . . . . . . 7 Fun rank
127 fvelima 6888 . . . . . . 7 ((Fun rank ∧ 𝑥 ∈ (rank “ (𝑅1‘(rank‘𝐴)))) → ∃𝑦 ∈ (𝑅1‘(rank‘𝐴))(rank‘𝑦) = 𝑥)
128126, 127mpan 690 . . . . . 6 (𝑥 ∈ (rank “ (𝑅1‘(rank‘𝐴))) → ∃𝑦 ∈ (𝑅1‘(rank‘𝐴))(rank‘𝑦) = 𝑥)
129 rankr1ai 9694 . . . . . . . 8 (𝑦 ∈ (𝑅1‘(rank‘𝐴)) → (rank‘𝑦) ∈ (rank‘𝐴))
130 eleq1 2816 . . . . . . . 8 ((rank‘𝑦) = 𝑥 → ((rank‘𝑦) ∈ (rank‘𝐴) ↔ 𝑥 ∈ (rank‘𝐴)))
131129, 130syl5ibcom 245 . . . . . . 7 (𝑦 ∈ (𝑅1‘(rank‘𝐴)) → ((rank‘𝑦) = 𝑥𝑥 ∈ (rank‘𝐴)))
132131rexlimiv 3123 . . . . . 6 (∃𝑦 ∈ (𝑅1‘(rank‘𝐴))(rank‘𝑦) = 𝑥𝑥 ∈ (rank‘𝐴))
133128, 132syl 17 . . . . 5 (𝑥 ∈ (rank “ (𝑅1‘(rank‘𝐴))) → 𝑥 ∈ (rank‘𝐴))
134133ssriv 3939 . . . 4 (rank “ (𝑅1‘(rank‘𝐴))) ⊆ (rank‘𝐴)
135124, 134sstrdi 3948 . . 3 ((TC‘𝐴) ⊆ (𝑅1‘(rank‘𝐴)) → (rank “ (TC‘𝐴)) ⊆ (rank‘𝐴))
136123, 135syl 17 . 2 (𝐴 (𝑅1 “ On) → (rank “ (TC‘𝐴)) ⊆ (rank‘𝐴))
137111, 136eqssd 3953 1 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = (rank “ (TC‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  wss 3903   cuni 4858   cint 4896  Tr wtr 5199  cima 5622  Ord word 6306  Oncon0 6307  suc csuc 6309  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  TCctc 9632  𝑅1cr1 9658  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-tc 9633  df-r1 9660  df-rank 9661
This theorem is referenced by:  hsmexlem5  10324  grur1  10714
  Copyright terms: Public domain W3C validator