| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nadd1rabtr | Structured version Visualization version GIF version | ||
| Description: The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| nadd1rabtr | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nadd2rabtr 43374 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) | |
| 2 | simpl2 1193 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ On) | |
| 3 | ordelon 6325 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 4 | 3 | 3ad2antl1 1186 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
| 5 | naddcom 8591 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +no 𝑥) = (𝑥 +no 𝐵)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (𝐵 +no 𝑥) = (𝑥 +no 𝐵)) |
| 7 | 6 | eleq1d 2813 | . . . 4 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → ((𝐵 +no 𝑥) ∈ 𝐶 ↔ (𝑥 +no 𝐵) ∈ 𝐶)) |
| 8 | 7 | rabbidva 3398 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} = {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) |
| 9 | treq 5202 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} = {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} → (Tr {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ↔ Tr {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶})) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (Tr {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ↔ Tr {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶})) |
| 11 | 1, 10 | mpbid 232 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3392 Tr wtr 5195 Ord word 6300 Oncon0 6301 (class class class)co 7340 +no cnadd 8574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-se 5567 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7343 df-oprab 7344 df-mpo 7345 df-1st 7915 df-2nd 7916 df-frecs 8205 df-nadd 8575 |
| This theorem is referenced by: nadd1rabord 43379 |
| Copyright terms: Public domain | W3C validator |