MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1c Structured version   Visualization version   GIF version

Theorem tz9.1c 9801
Description: Alternate expression for the existence of transitive closures tz9.1 9800: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypothesis
Ref Expression
tz9.1.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1c {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem tz9.1c
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1.1 . . . . 5 𝐴 ∈ V
2 eqid 2740 . . . . 5 (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)
3 eqid 2740 . . . . 5 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)
41, 2, 3trcl 9799 . . . 4 (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥))
5 3simpa 1148 . . . 4 ((𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) → (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
6 omex 9714 . . . . . 6 ω ∈ V
7 fvex 6935 . . . . . 6 ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V
86, 7iunex 8011 . . . . 5 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V
9 sseq2 4035 . . . . . 6 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → (𝐴𝑥𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
10 treq 5291 . . . . . 6 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → (Tr 𝑥 ↔ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
119, 10anbi12d 631 . . . . 5 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤))))
128, 11spcev 3619 . . . 4 ((𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)) → ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
134, 5, 12mp2b 10 . . 3 𝑥(𝐴𝑥 ∧ Tr 𝑥)
14 abn0 4408 . . 3 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
1513, 14mpbir 231 . 2 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅
16 intex 5362 . 2 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
1715, 16mpbi 230 1 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  Vcvv 3488  cun 3974  wss 3976  c0 4352   cuni 4931   cint 4970   ciun 5015  cmpt 5249  Tr wtr 5283  cres 5702  cfv 6575  ωcom 7905  reccrdg 8467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772  ax-inf2 9712
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468
This theorem is referenced by:  tcvalg  9809
  Copyright terms: Public domain W3C validator