| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.1c | Structured version Visualization version GIF version | ||
| Description: Alternate expression for the existence of transitive closures tz9.1 9688: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.) |
| Ref | Expression |
|---|---|
| tz9.1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tz9.1c | ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | eqid 2730 | . . . . 5 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) | |
| 3 | eqid 2730 | . . . . 5 ⊢ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) | |
| 4 | 1, 2, 3 | trcl 9687 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) |
| 5 | 3simpa 1148 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) → (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
| 6 | omex 9602 | . . . . . 6 ⊢ ω ∈ V | |
| 7 | fvex 6873 | . . . . . 6 ⊢ ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V | |
| 8 | 6, 7 | iunex 7949 | . . . . 5 ⊢ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V |
| 9 | sseq2 3975 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
| 10 | treq 5224 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → (Tr 𝑥 ↔ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
| 11 | 9, 10 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤)))) |
| 12 | 8, 11 | spcev 3575 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤)) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥)) |
| 13 | 4, 5, 12 | mp2b 10 | . . 3 ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥) |
| 14 | abn0 4350 | . . 3 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥)) | |
| 15 | 13, 14 | mpbir 231 | . 2 ⊢ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ |
| 16 | intex 5301 | . 2 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) | |
| 17 | 15, 16 | mpbi 230 | 1 ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ≠ wne 2926 Vcvv 3450 ∪ cun 3914 ⊆ wss 3916 ∅c0 4298 ∪ cuni 4873 ∩ cint 4912 ∪ ciun 4957 ↦ cmpt 5190 Tr wtr 5216 ↾ cres 5642 ‘cfv 6513 ωcom 7844 reccrdg 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-inf2 9600 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 |
| This theorem is referenced by: tcvalg 9697 |
| Copyright terms: Public domain | W3C validator |