MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1c Structured version   Visualization version   GIF version

Theorem tz9.1c 9625
Description: Alternate expression for the existence of transitive closures tz9.1 9624: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypothesis
Ref Expression
tz9.1.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1c {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem tz9.1c
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1.1 . . . . 5 𝐴 ∈ V
2 eqid 2738 . . . . 5 (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)
3 eqid 2738 . . . . 5 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)
41, 2, 3trcl 9623 . . . 4 (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥))
5 3simpa 1149 . . . 4 ((𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) → (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
6 omex 9538 . . . . . 6 ω ∈ V
7 fvex 6853 . . . . . 6 ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V
86, 7iunex 7894 . . . . 5 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V
9 sseq2 3969 . . . . . 6 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → (𝐴𝑥𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
10 treq 5229 . . . . . 6 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → (Tr 𝑥 ↔ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
119, 10anbi12d 632 . . . . 5 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤))))
128, 11spcev 3564 . . . 4 ((𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)) → ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
134, 5, 12mp2b 10 . . 3 𝑥(𝐴𝑥 ∧ Tr 𝑥)
14 abn0 4339 . . 3 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
1513, 14mpbir 230 . 2 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅
16 intex 5293 . 2 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
1715, 16mpbi 229 1 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wal 1540   = wceq 1542  wex 1782  wcel 2107  {cab 2715  wne 2942  Vcvv 3444  cun 3907  wss 3909  c0 4281   cuni 4864   cint 4906   ciun 4953  cmpt 5187  Tr wtr 5221  cres 5634  cfv 6494  ωcom 7795  reccrdg 8348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pr 5383  ax-un 7665  ax-inf2 9536
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-ov 7355  df-om 7796  df-2nd 7915  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349
This theorem is referenced by:  tcvalg  9633
  Copyright terms: Public domain W3C validator