![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz9.1c | Structured version Visualization version GIF version |
Description: Alternate expression for the existence of transitive closures tz9.1 9723: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.) |
Ref | Expression |
---|---|
tz9.1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz9.1c | ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | eqid 2732 | . . . . 5 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) | |
3 | eqid 2732 | . . . . 5 ⊢ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) | |
4 | 1, 2, 3 | trcl 9722 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) |
5 | 3simpa 1148 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) → (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
6 | omex 9637 | . . . . . 6 ⊢ ω ∈ V | |
7 | fvex 6904 | . . . . . 6 ⊢ ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V | |
8 | 6, 7 | iunex 7954 | . . . . 5 ⊢ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V |
9 | sseq2 4008 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
10 | treq 5273 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → (Tr 𝑥 ↔ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
11 | 9, 10 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤)))) |
12 | 8, 11 | spcev 3596 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤)) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥)) |
13 | 4, 5, 12 | mp2b 10 | . . 3 ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥) |
14 | abn0 4380 | . . 3 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥)) | |
15 | 13, 14 | mpbir 230 | . 2 ⊢ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ |
16 | intex 5337 | . 2 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) | |
17 | 15, 16 | mpbi 229 | 1 ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∀wal 1539 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ≠ wne 2940 Vcvv 3474 ∪ cun 3946 ⊆ wss 3948 ∅c0 4322 ∪ cuni 4908 ∩ cint 4950 ∪ ciun 4997 ↦ cmpt 5231 Tr wtr 5265 ↾ cres 5678 ‘cfv 6543 ωcom 7854 reccrdg 8408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 |
This theorem is referenced by: tcvalg 9732 |
Copyright terms: Public domain | W3C validator |