Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz9.1c | Structured version Visualization version GIF version |
Description: Alternate expression for the existence of transitive closures tz9.1 9487: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.) |
Ref | Expression |
---|---|
tz9.1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz9.1c | ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | eqid 2738 | . . . . 5 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) | |
3 | eqid 2738 | . . . . 5 ⊢ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) | |
4 | 1, 2, 3 | trcl 9486 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) |
5 | 3simpa 1147 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) → (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
6 | omex 9401 | . . . . . 6 ⊢ ω ∈ V | |
7 | fvex 6787 | . . . . . 6 ⊢ ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V | |
8 | 6, 7 | iunex 7811 | . . . . 5 ⊢ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V |
9 | sseq2 3947 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
10 | treq 5197 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → (Tr 𝑥 ↔ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
11 | 9, 10 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤)))) |
12 | 8, 11 | spcev 3545 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤)) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥)) |
13 | 4, 5, 12 | mp2b 10 | . . 3 ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥) |
14 | abn0 4314 | . . 3 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥)) | |
15 | 13, 14 | mpbir 230 | . 2 ⊢ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ |
16 | intex 5261 | . 2 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) | |
17 | 15, 16 | mpbi 229 | 1 ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ≠ wne 2943 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ∩ cint 4879 ∪ ciun 4924 ↦ cmpt 5157 Tr wtr 5191 ↾ cres 5591 ‘cfv 6433 ωcom 7712 reccrdg 8240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 |
This theorem is referenced by: tcvalg 9496 |
Copyright terms: Public domain | W3C validator |