MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1c Structured version   Visualization version   GIF version

Theorem tz9.1c 9160
Description: Alternate expression for the existence of transitive closures tz9.1 9159: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypothesis
Ref Expression
tz9.1.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1c {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem tz9.1c
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1.1 . . . . 5 𝐴 ∈ V
2 eqid 2822 . . . . 5 (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)
3 eqid 2822 . . . . 5 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)
41, 2, 3trcl 9158 . . . 4 (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥))
5 3simpa 1145 . . . 4 ((𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) → (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
6 omex 9094 . . . . . 6 ω ∈ V
7 fvex 6665 . . . . . 6 ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V
86, 7iunex 7655 . . . . 5 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V
9 sseq2 3968 . . . . . 6 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → (𝐴𝑥𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
10 treq 5154 . . . . . 6 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → (Tr 𝑥 ↔ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
119, 10anbi12d 633 . . . . 5 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤))))
128, 11spcev 3582 . . . 4 ((𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)) → ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
134, 5, 12mp2b 10 . . 3 𝑥(𝐴𝑥 ∧ Tr 𝑥)
14 abn0 4308 . . 3 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
1513, 14mpbir 234 . 2 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅
16 intex 5216 . 2 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
1715, 16mpbi 233 1 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2114  {cab 2800  wne 3011  Vcvv 3469  cun 3906  wss 3908  c0 4265   cuni 4813   cint 4851   ciun 4894  cmpt 5122  Tr wtr 5148  cres 5534  cfv 6334  ωcom 7565  reccrdg 8032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033
This theorem is referenced by:  tcvalg  9168
  Copyright terms: Public domain W3C validator