MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1c Structured version   Visualization version   GIF version

Theorem tz9.1c 9674
Description: Alternate expression for the existence of transitive closures tz9.1 9673: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypothesis
Ref Expression
tz9.1.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1c {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem tz9.1c
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1.1 . . . . 5 𝐴 ∈ V
2 eqid 2733 . . . . 5 (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)
3 eqid 2733 . . . . 5 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)
41, 2, 3trcl 9672 . . . 4 (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥))
5 3simpa 1149 . . . 4 ((𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) → (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
6 omex 9587 . . . . . 6 ω ∈ V
7 fvex 6859 . . . . . 6 ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V
86, 7iunex 7905 . . . . 5 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V
9 sseq2 3974 . . . . . 6 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → (𝐴𝑥𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
10 treq 5234 . . . . . 6 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → (Tr 𝑥 ↔ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
119, 10anbi12d 632 . . . . 5 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤))))
128, 11spcev 3567 . . . 4 ((𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)) → ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
134, 5, 12mp2b 10 . . 3 𝑥(𝐴𝑥 ∧ Tr 𝑥)
14 abn0 4344 . . 3 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
1513, 14mpbir 230 . 2 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅
16 intex 5298 . 2 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
1715, 16mpbi 229 1 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wal 1540   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wne 2940  Vcvv 3447  cun 3912  wss 3914  c0 4286   cuni 4869   cint 4911   ciun 4958  cmpt 5192  Tr wtr 5226  cres 5639  cfv 6500  ωcom 7806  reccrdg 8359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676  ax-inf2 9585
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360
This theorem is referenced by:  tcvalg  9682
  Copyright terms: Public domain W3C validator