| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.1c | Structured version Visualization version GIF version | ||
| Description: Alternate expression for the existence of transitive closures tz9.1 9751: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.) |
| Ref | Expression |
|---|---|
| tz9.1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tz9.1c | ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | eqid 2734 | . . . . 5 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) | |
| 3 | eqid 2734 | . . . . 5 ⊢ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) | |
| 4 | 1, 2, 3 | trcl 9750 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) |
| 5 | 3simpa 1148 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) → (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
| 6 | omex 9665 | . . . . . 6 ⊢ ω ∈ V | |
| 7 | fvex 6899 | . . . . . 6 ⊢ ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V | |
| 8 | 6, 7 | iunex 7975 | . . . . 5 ⊢ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V |
| 9 | sseq2 3990 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
| 10 | treq 5247 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → (Tr 𝑥 ↔ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
| 11 | 9, 10 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤)))) |
| 12 | 8, 11 | spcev 3589 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤)) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥)) |
| 13 | 4, 5, 12 | mp2b 10 | . . 3 ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥) |
| 14 | abn0 4365 | . . 3 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥)) | |
| 15 | 13, 14 | mpbir 231 | . 2 ⊢ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ |
| 16 | intex 5324 | . 2 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) | |
| 17 | 15, 16 | mpbi 230 | 1 ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 ≠ wne 2931 Vcvv 3463 ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4887 ∩ cint 4926 ∪ ciun 4971 ↦ cmpt 5205 Tr wtr 5239 ↾ cres 5667 ‘cfv 6541 ωcom 7869 reccrdg 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 |
| This theorem is referenced by: tcvalg 9760 |
| Copyright terms: Public domain | W3C validator |