![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topclat | Structured version Visualization version GIF version |
Description: A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
topclat.i | β’ πΌ = (toIncβπ½) |
Ref | Expression |
---|---|
topclat | β’ (π½ β Top β πΌ β CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topclat.i | . . 3 β’ πΌ = (toIncβπ½) | |
2 | 1 | ipobas 18530 | . 2 β’ (π½ β Top β π½ = (BaseβπΌ)) |
3 | eqidd 2729 | . 2 β’ (π½ β Top β (lubβπΌ) = (lubβπΌ)) | |
4 | eqidd 2729 | . 2 β’ (π½ β Top β (glbβπΌ) = (glbβπΌ)) | |
5 | 1 | ipopos 18535 | . . 3 β’ πΌ β Poset |
6 | 5 | a1i 11 | . 2 β’ (π½ β Top β πΌ β Poset) |
7 | uniopn 22819 | . . 3 β’ ((π½ β Top β§ π₯ β π½) β βͺ π₯ β π½) | |
8 | simpl 481 | . . . 4 β’ ((π½ β Top β§ π₯ β π½) β π½ β Top) | |
9 | simpr 483 | . . . 4 β’ ((π½ β Top β§ π₯ β π½) β π₯ β π½) | |
10 | eqidd 2729 | . . . 4 β’ ((π½ β Top β§ π₯ β π½) β (lubβπΌ) = (lubβπΌ)) | |
11 | intmin 4975 | . . . . . 6 β’ (βͺ π₯ β π½ β β© {π¦ β π½ β£ βͺ π₯ β π¦} = βͺ π₯) | |
12 | 11 | eqcomd 2734 | . . . . 5 β’ (βͺ π₯ β π½ β βͺ π₯ = β© {π¦ β π½ β£ βͺ π₯ β π¦}) |
13 | 7, 12 | syl 17 | . . . 4 β’ ((π½ β Top β§ π₯ β π½) β βͺ π₯ = β© {π¦ β π½ β£ βͺ π₯ β π¦}) |
14 | 1, 8, 9, 10, 13 | ipolubdm 48076 | . . 3 β’ ((π½ β Top β§ π₯ β π½) β (π₯ β dom (lubβπΌ) β βͺ π₯ β π½)) |
15 | 7, 14 | mpbird 256 | . 2 β’ ((π½ β Top β§ π₯ β π½) β π₯ β dom (lubβπΌ)) |
16 | ssrab2 4077 | . . . 4 β’ {π¦ β π½ β£ π¦ β β© π₯} β π½ | |
17 | uniopn 22819 | . . . 4 β’ ((π½ β Top β§ {π¦ β π½ β£ π¦ β β© π₯} β π½) β βͺ {π¦ β π½ β£ π¦ β β© π₯} β π½) | |
18 | 8, 16, 17 | sylancl 584 | . . 3 β’ ((π½ β Top β§ π₯ β π½) β βͺ {π¦ β π½ β£ π¦ β β© π₯} β π½) |
19 | eqidd 2729 | . . . 4 β’ ((π½ β Top β§ π₯ β π½) β (glbβπΌ) = (glbβπΌ)) | |
20 | eqidd 2729 | . . . 4 β’ ((π½ β Top β§ π₯ β π½) β βͺ {π¦ β π½ β£ π¦ β β© π₯} = βͺ {π¦ β π½ β£ π¦ β β© π₯}) | |
21 | 1, 8, 9, 19, 20 | ipoglbdm 48079 | . . 3 β’ ((π½ β Top β§ π₯ β π½) β (π₯ β dom (glbβπΌ) β βͺ {π¦ β π½ β£ π¦ β β© π₯} β π½)) |
22 | 18, 21 | mpbird 256 | . 2 β’ ((π½ β Top β§ π₯ β π½) β π₯ β dom (glbβπΌ)) |
23 | 2, 3, 4, 6, 15, 22 | isclatd 48072 | 1 β’ (π½ β Top β πΌ β CLat) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 {crab 3430 β wss 3949 βͺ cuni 4912 β© cint 4953 dom cdm 5682 βcfv 6553 Posetcpo 18306 lubclub 18308 glbcglb 18309 CLatccla 18497 toInccipo 18526 Topctop 22815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17188 df-tset 17259 df-ple 17260 df-ocomp 17261 df-proset 18294 df-poset 18312 df-lub 18345 df-glb 18346 df-clat 18498 df-ipo 18527 df-top 22816 |
This theorem is referenced by: topdlat 48093 |
Copyright terms: Public domain | W3C validator |