| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topclat | Structured version Visualization version GIF version | ||
| Description: A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| topclat.i | ⊢ 𝐼 = (toInc‘𝐽) |
| Ref | Expression |
|---|---|
| topclat | ⊢ (𝐽 ∈ Top → 𝐼 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topclat.i | . . 3 ⊢ 𝐼 = (toInc‘𝐽) | |
| 2 | 1 | ipobas 18541 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 = (Base‘𝐼)) |
| 3 | eqidd 2736 | . 2 ⊢ (𝐽 ∈ Top → (lub‘𝐼) = (lub‘𝐼)) | |
| 4 | eqidd 2736 | . 2 ⊢ (𝐽 ∈ Top → (glb‘𝐼) = (glb‘𝐼)) | |
| 5 | 1 | ipopos 18546 | . . 3 ⊢ 𝐼 ∈ Poset |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐽 ∈ Top → 𝐼 ∈ Poset) |
| 7 | uniopn 22835 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → ∪ 𝑥 ∈ 𝐽) | |
| 8 | simpl 482 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → 𝐽 ∈ Top) | |
| 9 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → 𝑥 ⊆ 𝐽) | |
| 10 | eqidd 2736 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → (lub‘𝐼) = (lub‘𝐼)) | |
| 11 | intmin 4944 | . . . . . 6 ⊢ (∪ 𝑥 ∈ 𝐽 → ∩ {𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦} = ∪ 𝑥) | |
| 12 | 11 | eqcomd 2741 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐽 → ∪ 𝑥 = ∩ {𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦}) |
| 13 | 7, 12 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → ∪ 𝑥 = ∩ {𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦}) |
| 14 | 1, 8, 9, 10, 13 | ipolubdm 48961 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → (𝑥 ∈ dom (lub‘𝐼) ↔ ∪ 𝑥 ∈ 𝐽)) |
| 15 | 7, 14 | mpbird 257 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → 𝑥 ∈ dom (lub‘𝐼)) |
| 16 | ssrab2 4055 | . . . 4 ⊢ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} ⊆ 𝐽 | |
| 17 | uniopn 22835 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} ⊆ 𝐽) → ∪ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐽) | |
| 18 | 8, 16, 17 | sylancl 586 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → ∪ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐽) |
| 19 | eqidd 2736 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → (glb‘𝐼) = (glb‘𝐼)) | |
| 20 | eqidd 2736 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → ∪ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥}) | |
| 21 | 1, 8, 9, 19, 20 | ipoglbdm 48964 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → (𝑥 ∈ dom (glb‘𝐼) ↔ ∪ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐽)) |
| 22 | 18, 21 | mpbird 257 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → 𝑥 ∈ dom (glb‘𝐼)) |
| 23 | 2, 3, 4, 6, 15, 22 | isclatd 48957 | 1 ⊢ (𝐽 ∈ Top → 𝐼 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 ∪ cuni 4883 ∩ cint 4922 dom cdm 5654 ‘cfv 6531 Posetcpo 18319 lubclub 18321 glbcglb 18322 CLatccla 18508 toInccipo 18537 Topctop 22831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-tset 17290 df-ple 17291 df-ocomp 17292 df-proset 18306 df-poset 18325 df-lub 18356 df-glb 18357 df-clat 18509 df-ipo 18538 df-top 22832 |
| This theorem is referenced by: topdlat 48978 |
| Copyright terms: Public domain | W3C validator |