Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > topclat | Structured version Visualization version GIF version |
Description: A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
topclat.i | ⊢ 𝐼 = (toInc‘𝐽) |
Ref | Expression |
---|---|
topclat | ⊢ (𝐽 ∈ Top → 𝐼 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topclat.i | . . 3 ⊢ 𝐼 = (toInc‘𝐽) | |
2 | 1 | ipobas 18164 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 = (Base‘𝐼)) |
3 | eqidd 2739 | . 2 ⊢ (𝐽 ∈ Top → (lub‘𝐼) = (lub‘𝐼)) | |
4 | eqidd 2739 | . 2 ⊢ (𝐽 ∈ Top → (glb‘𝐼) = (glb‘𝐼)) | |
5 | 1 | ipopos 18169 | . . 3 ⊢ 𝐼 ∈ Poset |
6 | 5 | a1i 11 | . 2 ⊢ (𝐽 ∈ Top → 𝐼 ∈ Poset) |
7 | uniopn 21954 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → ∪ 𝑥 ∈ 𝐽) | |
8 | simpl 482 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → 𝐽 ∈ Top) | |
9 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → 𝑥 ⊆ 𝐽) | |
10 | eqidd 2739 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → (lub‘𝐼) = (lub‘𝐼)) | |
11 | intmin 4896 | . . . . . 6 ⊢ (∪ 𝑥 ∈ 𝐽 → ∩ {𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦} = ∪ 𝑥) | |
12 | 11 | eqcomd 2744 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐽 → ∪ 𝑥 = ∩ {𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦}) |
13 | 7, 12 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → ∪ 𝑥 = ∩ {𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦}) |
14 | 1, 8, 9, 10, 13 | ipolubdm 46161 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → (𝑥 ∈ dom (lub‘𝐼) ↔ ∪ 𝑥 ∈ 𝐽)) |
15 | 7, 14 | mpbird 256 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → 𝑥 ∈ dom (lub‘𝐼)) |
16 | ssrab2 4009 | . . . 4 ⊢ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} ⊆ 𝐽 | |
17 | uniopn 21954 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} ⊆ 𝐽) → ∪ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐽) | |
18 | 8, 16, 17 | sylancl 585 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → ∪ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐽) |
19 | eqidd 2739 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → (glb‘𝐼) = (glb‘𝐼)) | |
20 | eqidd 2739 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → ∪ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥}) | |
21 | 1, 8, 9, 19, 20 | ipoglbdm 46164 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → (𝑥 ∈ dom (glb‘𝐼) ↔ ∪ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐽)) |
22 | 18, 21 | mpbird 256 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽) → 𝑥 ∈ dom (glb‘𝐼)) |
23 | 2, 3, 4, 6, 15, 22 | isclatd 46157 | 1 ⊢ (𝐽 ∈ Top → 𝐼 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ∪ cuni 4836 ∩ cint 4876 dom cdm 5580 ‘cfv 6418 Posetcpo 17940 lubclub 17942 glbcglb 17943 CLatccla 18131 toInccipo 18160 Topctop 21950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-tset 16907 df-ple 16908 df-ocomp 16909 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 df-clat 18132 df-ipo 18161 df-top 21951 |
This theorem is referenced by: topdlat 46178 |
Copyright terms: Public domain | W3C validator |