MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntropn Structured version   Visualization version   GIF version

Theorem ntropn 23072
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntropn ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)

Proof of Theorem ntropn
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21ntrval 23059 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
3 inss1 4244 . . . 4 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽
4 uniopn 22918 . . . 4 ((𝐽 ∈ Top ∧ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽) → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
53, 4mpan2 691 . . 3 (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
65adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
72, 6eqeltrd 2838 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  cin 3961  wss 3962  𝒫 cpw 4604   cuni 4911  cfv 6562  Topctop 22914  intcnt 23040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-top 22915  df-ntr 23043
This theorem is referenced by:  ntrval2  23074  ntrss3  23083  ntrin  23084  cmclsopn  23085  cmntrcld  23086  isopn3  23089  ntridm  23091  neiint  23127  topssnei  23147  maxlp  23170  restntr  23205  iscnp4  23286  cnntri  23294  cnprest  23312  llycmpkgen2  23573  xkococnlem  23682  flimopn  23998  fclsneii  24040  fcfnei  24058  subgntr  24130  iccntr  24856  rectbntr0  24867  bcthlem5  25375  bcth3  25378  limcflf  25930  perfdvf  25952  ubthlem1  30898  cvmlift2lem12  35298  opnregcld  36312  ntrrn  44111  toplatglb  48789
  Copyright terms: Public domain W3C validator