![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntropn | Structured version Visualization version GIF version |
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntropn | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrval 23059 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | inss1 4244 | . . . 4 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽 | |
4 | uniopn 22918 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) | |
5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) |
7 | 2, 6 | eqeltrd 2838 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∩ cin 3961 ⊆ wss 3962 𝒫 cpw 4604 ∪ cuni 4911 ‘cfv 6562 Topctop 22914 intcnt 23040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-top 22915 df-ntr 23043 |
This theorem is referenced by: ntrval2 23074 ntrss3 23083 ntrin 23084 cmclsopn 23085 cmntrcld 23086 isopn3 23089 ntridm 23091 neiint 23127 topssnei 23147 maxlp 23170 restntr 23205 iscnp4 23286 cnntri 23294 cnprest 23312 llycmpkgen2 23573 xkococnlem 23682 flimopn 23998 fclsneii 24040 fcfnei 24058 subgntr 24130 iccntr 24856 rectbntr0 24867 bcthlem5 25375 bcth3 25378 limcflf 25930 perfdvf 25952 ubthlem1 30898 cvmlift2lem12 35298 opnregcld 36312 ntrrn 44111 toplatglb 48789 |
Copyright terms: Public domain | W3C validator |