Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ntropn | Structured version Visualization version GIF version |
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntropn | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrval 22187 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | inss1 4162 | . . . 4 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽 | |
4 | uniopn 22046 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) | |
5 | 3, 4 | mpan2 688 | . . 3 ⊢ (𝐽 ∈ Top → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) |
7 | 2, 6 | eqeltrd 2839 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 intcnt 22168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-ntr 22171 |
This theorem is referenced by: ntrval2 22202 ntrss3 22211 ntrin 22212 cmclsopn 22213 cmntrcld 22214 isopn3 22217 ntridm 22219 neiint 22255 topssnei 22275 maxlp 22298 restntr 22333 iscnp4 22414 cnntri 22422 cnprest 22440 llycmpkgen2 22701 xkococnlem 22810 flimopn 23126 fclsneii 23168 fcfnei 23186 subgntr 23258 iccntr 23984 rectbntr0 23995 bcthlem5 24492 bcth3 24495 limcflf 25045 perfdvf 25067 ubthlem1 29232 cvmlift2lem12 33276 opnregcld 34519 ntrrn 41732 toplatglb 46287 |
Copyright terms: Public domain | W3C validator |