MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntropn Structured version   Visualization version   GIF version

Theorem ntropn 22200
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntropn ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)

Proof of Theorem ntropn
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21ntrval 22187 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
3 inss1 4162 . . . 4 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽
4 uniopn 22046 . . . 4 ((𝐽 ∈ Top ∧ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽) → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
53, 4mpan2 688 . . 3 (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
65adantr 481 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
72, 6eqeltrd 2839 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  cfv 6433  Topctop 22042  intcnt 22168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-ntr 22171
This theorem is referenced by:  ntrval2  22202  ntrss3  22211  ntrin  22212  cmclsopn  22213  cmntrcld  22214  isopn3  22217  ntridm  22219  neiint  22255  topssnei  22275  maxlp  22298  restntr  22333  iscnp4  22414  cnntri  22422  cnprest  22440  llycmpkgen2  22701  xkococnlem  22810  flimopn  23126  fclsneii  23168  fcfnei  23186  subgntr  23258  iccntr  23984  rectbntr0  23995  bcthlem5  24492  bcth3  24495  limcflf  25045  perfdvf  25067  ubthlem1  29232  cvmlift2lem12  33276  opnregcld  34519  ntrrn  41732  toplatglb  46287
  Copyright terms: Public domain W3C validator