| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntropn | Structured version Visualization version GIF version | ||
| Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntropn | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrval 22974 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 3 | inss1 4212 | . . . 4 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽 | |
| 4 | uniopn 22835 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) |
| 7 | 2, 6 | eqeltrd 2834 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 ‘cfv 6531 Topctop 22831 intcnt 22955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-top 22832 df-ntr 22958 |
| This theorem is referenced by: ntrval2 22989 ntrss3 22998 ntrin 22999 cmclsopn 23000 cmntrcld 23001 isopn3 23004 ntridm 23006 neiint 23042 topssnei 23062 maxlp 23085 restntr 23120 iscnp4 23201 cnntri 23209 cnprest 23227 llycmpkgen2 23488 xkococnlem 23597 flimopn 23913 fclsneii 23955 fcfnei 23973 subgntr 24045 iccntr 24761 rectbntr0 24772 bcthlem5 25280 bcth3 25283 limcflf 25834 perfdvf 25856 ubthlem1 30851 cvmlift2lem12 35336 opnregcld 36348 ntrrn 44146 toplatglb 48975 |
| Copyright terms: Public domain | W3C validator |