![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntropn | Structured version Visualization version GIF version |
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntropn | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrval 21169 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | inss1 4028 | . . . 4 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽 | |
4 | uniopn 21030 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) | |
5 | 3, 4 | mpan2 683 | . . 3 ⊢ (𝐽 ∈ Top → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) |
6 | 5 | adantr 473 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) |
7 | 2, 6 | eqeltrd 2878 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∩ cin 3768 ⊆ wss 3769 𝒫 cpw 4349 ∪ cuni 4628 ‘cfv 6101 Topctop 21026 intcnt 21150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-top 21027 df-ntr 21153 |
This theorem is referenced by: ntrval2 21184 ntrss3 21193 ntrin 21194 cmclsopn 21195 cmntrcld 21196 isopn3 21199 ntridm 21201 neiint 21237 topssnei 21257 maxlp 21280 restntr 21315 iscnp4 21396 cnntri 21404 cnprest 21422 llycmpkgen2 21682 xkococnlem 21791 flimopn 22107 fclsneii 22149 fcfnei 22167 subgntr 22238 iccntr 22952 rectbntr0 22963 bcthlem5 23454 bcth3 23457 limcflf 23986 perfdvf 24008 ubthlem1 28251 cvmlift2lem12 31813 opnregcld 32837 ntrrn 39202 |
Copyright terms: Public domain | W3C validator |