Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ntropn | Structured version Visualization version GIF version |
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntropn | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrval 22131 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | inss1 4164 | . . . 4 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽 | |
4 | uniopn 21990 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) | |
5 | 3, 4 | mpan2 687 | . . 3 ⊢ (𝐽 ∈ Top → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽) |
7 | 2, 6 | eqeltrd 2837 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3887 ⊆ wss 3888 𝒫 cpw 4535 ∪ cuni 4841 ‘cfv 6423 Topctop 21986 intcnt 22112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-top 21987 df-ntr 22115 |
This theorem is referenced by: ntrval2 22146 ntrss3 22155 ntrin 22156 cmclsopn 22157 cmntrcld 22158 isopn3 22161 ntridm 22163 neiint 22199 topssnei 22219 maxlp 22242 restntr 22277 iscnp4 22358 cnntri 22366 cnprest 22384 llycmpkgen2 22645 xkococnlem 22754 flimopn 23070 fclsneii 23112 fcfnei 23130 subgntr 23202 iccntr 23928 rectbntr0 23939 bcthlem5 24435 bcth3 24438 limcflf 24988 perfdvf 25010 ubthlem1 29173 cvmlift2lem12 33218 opnregcld 34488 ntrrn 41663 toplatglb 46217 |
Copyright terms: Public domain | W3C validator |