MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxel Structured version   Visualization version   GIF version

Theorem uvtxel 29387
Description: A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxel (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉

Proof of Theorem uvtxel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 sneq 4587 . . . 4 (𝑣 = 𝑁 → {𝑣} = {𝑁})
21difeq2d 4075 . . 3 (𝑣 = 𝑁 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑁}))
3 oveq2 7363 . . . 4 (𝑣 = 𝑁 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑁))
43eleq2d 2819 . . 3 (𝑣 = 𝑁 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
52, 4raleqbidv 3313 . 2 (𝑣 = 𝑁 → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
6 uvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
76uvtxval 29386 . 2 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
85, 7elrab2 3646 1 (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  cdif 3895  {csn 4577  cfv 6489  (class class class)co 7355  Vtxcvtx 28995   NeighbVtx cnbgr 29331  UnivVtxcuvtx 29384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-uvtx 29385
This theorem is referenced by:  uvtxisvtx  29388  vtxnbuvtx  29390  uvtx2vtx1edg  29397  uvtx2vtx1edgb  29398  uvtxnbgrb  29400  iscplgrnb  29415  cplgr1v  29429  cusgrexi  29442  structtocusgr  29445
  Copyright terms: Public domain W3C validator