| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvtxel | Structured version Visualization version GIF version | ||
| Description: A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
| Ref | Expression |
|---|---|
| uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| uvtxel | ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4595 | . . . 4 ⊢ (𝑣 = 𝑁 → {𝑣} = {𝑁}) | |
| 2 | 1 | difeq2d 4085 | . . 3 ⊢ (𝑣 = 𝑁 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑁})) |
| 3 | oveq2 7377 | . . . 4 ⊢ (𝑣 = 𝑁 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑁)) | |
| 4 | 3 | eleq2d 2814 | . . 3 ⊢ (𝑣 = 𝑁 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑁))) |
| 5 | 2, 4 | raleqbidv 3316 | . 2 ⊢ (𝑣 = 𝑁 → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))) |
| 6 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | 6 | uvtxval 29290 | . 2 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} |
| 8 | 5, 7 | elrab2 3659 | 1 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3908 {csn 4585 ‘cfv 6499 (class class class)co 7369 Vtxcvtx 28899 NeighbVtx cnbgr 29235 UnivVtxcuvtx 29288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-uvtx 29289 |
| This theorem is referenced by: uvtxisvtx 29292 vtxnbuvtx 29294 uvtx2vtx1edg 29301 uvtx2vtx1edgb 29302 uvtxnbgrb 29304 iscplgrnb 29319 cplgr1v 29333 cusgrexi 29346 structtocusgr 29349 |
| Copyright terms: Public domain | W3C validator |