Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxel Structured version   Visualization version   GIF version

Theorem uvtxel 27184
 Description: A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxel (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉

Proof of Theorem uvtxel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 sneq 4561 . . . 4 (𝑣 = 𝑁 → {𝑣} = {𝑁})
21difeq2d 4086 . . 3 (𝑣 = 𝑁 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑁}))
3 oveq2 7158 . . . 4 (𝑣 = 𝑁 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑁))
43eleq2d 2901 . . 3 (𝑣 = 𝑁 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
52, 4raleqbidv 3393 . 2 (𝑣 = 𝑁 → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
6 uvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
76uvtxval 27183 . 2 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
85, 7elrab2 3670 1 (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133   ∖ cdif 3917  {csn 4551  ‘cfv 6344  (class class class)co 7150  Vtxcvtx 26795   NeighbVtx cnbgr 27128  UnivVtxcuvtx 27181 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3483  df-sbc 3760  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-iota 6303  df-fun 6346  df-fv 6352  df-ov 7153  df-uvtx 27182 This theorem is referenced by:  uvtxisvtx  27185  vtxnbuvtx  27187  uvtx2vtx1edg  27194  uvtx2vtx1edgb  27195  uvtxnbgrb  27197  iscplgrnb  27212  cplgr1v  27226  cusgrexi  27239  structtocusgr  27242
 Copyright terms: Public domain W3C validator