MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxel Structured version   Visualization version   GIF version

Theorem uvtxel 28910
Description: A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxel (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉

Proof of Theorem uvtxel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 sneq 4639 . . . 4 (𝑣 = 𝑁 → {𝑣} = {𝑁})
21difeq2d 4123 . . 3 (𝑣 = 𝑁 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑁}))
3 oveq2 7421 . . . 4 (𝑣 = 𝑁 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑁))
43eleq2d 2817 . . 3 (𝑣 = 𝑁 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
52, 4raleqbidv 3340 . 2 (𝑣 = 𝑁 → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
6 uvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
76uvtxval 28909 . 2 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
85, 7elrab2 3687 1 (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  cdif 3946  {csn 4629  cfv 6544  (class class class)co 7413  Vtxcvtx 28521   NeighbVtx cnbgr 28854  UnivVtxcuvtx 28907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7416  df-uvtx 28908
This theorem is referenced by:  uvtxisvtx  28911  vtxnbuvtx  28913  uvtx2vtx1edg  28920  uvtx2vtx1edgb  28921  uvtxnbgrb  28923  iscplgrnb  28938  cplgr1v  28952  cusgrexi  28965  structtocusgr  28968
  Copyright terms: Public domain W3C validator