| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for vtxdginducedm1 29477: the domain of the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
| vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
| vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
| Ref | Expression |
|---|---|
| vtxdginducedm1lem2 | ⊢ dom (iEdg‘𝑆) = 𝐼 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdginducedm1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vtxdginducedm1.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | vtxdginducedm1.k | . . . . 5 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
| 4 | vtxdginducedm1.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
| 5 | vtxdginducedm1.p | . . . . 5 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
| 6 | vtxdginducedm1.s | . . . . 5 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
| 7 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 29473 | . . . 4 ⊢ (iEdg‘𝑆) = 𝑃 |
| 8 | 7, 5 | eqtri 2753 | . . 3 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐼) |
| 9 | 8 | dmeqi 5870 | . 2 ⊢ dom (iEdg‘𝑆) = dom (𝐸 ↾ 𝐼) |
| 10 | 4 | ssrab3 4047 | . . 3 ⊢ 𝐼 ⊆ dom 𝐸 |
| 11 | ssdmres 5986 | . . 3 ⊢ (𝐼 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ 𝐼) = 𝐼) | |
| 12 | 10, 11 | mpbi 230 | . 2 ⊢ dom (𝐸 ↾ 𝐼) = 𝐼 |
| 13 | 9, 12 | eqtri 2753 | 1 ⊢ dom (iEdg‘𝑆) = 𝐼 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∉ wnel 3030 {crab 3408 ∖ cdif 3913 ⊆ wss 3916 {csn 4591 〈cop 4597 dom cdm 5640 ↾ cres 5642 ‘cfv 6513 Vtxcvtx 28929 iEdgciedg 28930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-iota 6466 df-fun 6515 df-fv 6521 df-2nd 7971 df-iedg 28932 |
| This theorem is referenced by: vtxdginducedm1 29477 |
| Copyright terms: Public domain | W3C validator |