MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem2 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem2 29468
Description: Lemma 2 for vtxdginducedm1 29471: the domain of the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
Assertion
Ref Expression
vtxdginducedm1lem2 dom (iEdg‘𝑆) = 𝐼
Distinct variable group:   𝑖,𝐸
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐺(𝑖)   𝐼(𝑖)   𝐾(𝑖)   𝑁(𝑖)   𝑉(𝑖)

Proof of Theorem vtxdginducedm1lem2
StepHypRef Expression
1 vtxdginducedm1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 vtxdginducedm1.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 vtxdginducedm1.k . . . . 5 𝐾 = (𝑉 ∖ {𝑁})
4 vtxdginducedm1.i . . . . 5 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 vtxdginducedm1.p . . . . 5 𝑃 = (𝐸𝐼)
6 vtxdginducedm1.s . . . . 5 𝑆 = ⟨𝐾, 𝑃
71, 2, 3, 4, 5, 6vtxdginducedm1lem1 29467 . . . 4 (iEdg‘𝑆) = 𝑃
87, 5eqtri 2752 . . 3 (iEdg‘𝑆) = (𝐸𝐼)
98dmeqi 5868 . 2 dom (iEdg‘𝑆) = dom (𝐸𝐼)
104ssrab3 4045 . . 3 𝐼 ⊆ dom 𝐸
11 ssdmres 5984 . . 3 (𝐼 ⊆ dom 𝐸 ↔ dom (𝐸𝐼) = 𝐼)
1210, 11mpbi 230 . 2 dom (𝐸𝐼) = 𝐼
139, 12eqtri 2752 1 dom (iEdg‘𝑆) = 𝐼
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wnel 3029  {crab 3405  cdif 3911  wss 3914  {csn 4589  cop 4595  dom cdm 5638  cres 5640  cfv 6511  Vtxcvtx 28923  iEdgciedg 28924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-2nd 7969  df-iedg 28926
This theorem is referenced by:  vtxdginducedm1  29471
  Copyright terms: Public domain W3C validator