![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for vtxdginducedm1 29587: the domain of the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
Ref | Expression |
---|---|
vtxdginducedm1lem2 | ⊢ dom (iEdg‘𝑆) = 𝐼 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdginducedm1.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | vtxdginducedm1.k | . . . . 5 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
5 | vtxdginducedm1.p | . . . . 5 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
6 | vtxdginducedm1.s | . . . . 5 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
7 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 29583 | . . . 4 ⊢ (iEdg‘𝑆) = 𝑃 |
8 | 7, 5 | eqtri 2765 | . . 3 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐼) |
9 | 8 | dmeqi 5922 | . 2 ⊢ dom (iEdg‘𝑆) = dom (𝐸 ↾ 𝐼) |
10 | 4 | ssrab3 4095 | . . 3 ⊢ 𝐼 ⊆ dom 𝐸 |
11 | ssdmres 6038 | . . 3 ⊢ (𝐼 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ 𝐼) = 𝐼) | |
12 | 10, 11 | mpbi 230 | . 2 ⊢ dom (𝐸 ↾ 𝐼) = 𝐼 |
13 | 9, 12 | eqtri 2765 | 1 ⊢ dom (iEdg‘𝑆) = 𝐼 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∉ wnel 3046 {crab 3436 ∖ cdif 3963 ⊆ wss 3966 {csn 4634 〈cop 4640 dom cdm 5693 ↾ cres 5695 ‘cfv 6569 Vtxcvtx 29039 iEdgciedg 29040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 df-2nd 8023 df-iedg 29042 |
This theorem is referenced by: vtxdginducedm1 29587 |
Copyright terms: Public domain | W3C validator |