| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for vtxdginducedm1 29489: the domain of the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
| vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
| vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
| Ref | Expression |
|---|---|
| vtxdginducedm1lem2 | ⊢ dom (iEdg‘𝑆) = 𝐼 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdginducedm1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vtxdginducedm1.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | vtxdginducedm1.k | . . . . 5 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
| 4 | vtxdginducedm1.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
| 5 | vtxdginducedm1.p | . . . . 5 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
| 6 | vtxdginducedm1.s | . . . . 5 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
| 7 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 29485 | . . . 4 ⊢ (iEdg‘𝑆) = 𝑃 |
| 8 | 7, 5 | eqtri 2757 | . . 3 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐼) |
| 9 | 8 | dmeqi 5895 | . 2 ⊢ dom (iEdg‘𝑆) = dom (𝐸 ↾ 𝐼) |
| 10 | 4 | ssrab3 4062 | . . 3 ⊢ 𝐼 ⊆ dom 𝐸 |
| 11 | ssdmres 6011 | . . 3 ⊢ (𝐼 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ 𝐼) = 𝐼) | |
| 12 | 10, 11 | mpbi 230 | . 2 ⊢ dom (𝐸 ↾ 𝐼) = 𝐼 |
| 13 | 9, 12 | eqtri 2757 | 1 ⊢ dom (iEdg‘𝑆) = 𝐼 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∉ wnel 3035 {crab 3419 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 〈cop 4612 dom cdm 5665 ↾ cres 5667 ‘cfv 6541 Vtxcvtx 28941 iEdgciedg 28942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-iota 6494 df-fun 6543 df-fv 6549 df-2nd 7997 df-iedg 28944 |
| This theorem is referenced by: vtxdginducedm1 29489 |
| Copyright terms: Public domain | W3C validator |