Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for vtxdginducedm1 27910: the domain of the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
Ref | Expression |
---|---|
vtxdginducedm1lem2 | ⊢ dom (iEdg‘𝑆) = 𝐼 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdginducedm1.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | vtxdginducedm1.k | . . . . 5 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
5 | vtxdginducedm1.p | . . . . 5 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
6 | vtxdginducedm1.s | . . . . 5 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
7 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 27906 | . . . 4 ⊢ (iEdg‘𝑆) = 𝑃 |
8 | 7, 5 | eqtri 2766 | . . 3 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐼) |
9 | 8 | dmeqi 5813 | . 2 ⊢ dom (iEdg‘𝑆) = dom (𝐸 ↾ 𝐼) |
10 | 4 | ssrab3 4015 | . . 3 ⊢ 𝐼 ⊆ dom 𝐸 |
11 | ssdmres 5914 | . . 3 ⊢ (𝐼 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ 𝐼) = 𝐼) | |
12 | 10, 11 | mpbi 229 | . 2 ⊢ dom (𝐸 ↾ 𝐼) = 𝐼 |
13 | 9, 12 | eqtri 2766 | 1 ⊢ dom (iEdg‘𝑆) = 𝐼 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∉ wnel 3049 {crab 3068 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 〈cop 4567 dom cdm 5589 ↾ cres 5591 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-2nd 7832 df-iedg 27369 |
This theorem is referenced by: vtxdginducedm1 27910 |
Copyright terms: Public domain | W3C validator |