![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for vtxdginducedm1 29344: the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = ⟨𝐾, 𝑃⟩ |
Ref | Expression |
---|---|
vtxdginducedm1lem1 | ⊢ (iEdg‘𝑆) = 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.s | . . 3 ⊢ 𝑆 = ⟨𝐾, 𝑃⟩ | |
2 | 1 | fveq2i 6894 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘⟨𝐾, 𝑃⟩) |
3 | vtxdginducedm1.k | . . . 4 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | fvexi 6905 | . . . . 5 ⊢ 𝑉 ∈ V |
6 | 5 | difexi 5324 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
7 | 3, 6 | eqeltri 2824 | . . 3 ⊢ 𝐾 ∈ V |
8 | vtxdginducedm1.p | . . . 4 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
9 | vtxdginducedm1.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
10 | 9 | fvexi 6905 | . . . . 5 ⊢ 𝐸 ∈ V |
11 | 10 | resex 6027 | . . . 4 ⊢ (𝐸 ↾ 𝐼) ∈ V |
12 | 8, 11 | eqeltri 2824 | . . 3 ⊢ 𝑃 ∈ V |
13 | 7, 12 | opiedgfvi 28810 | . 2 ⊢ (iEdg‘⟨𝐾, 𝑃⟩) = 𝑃 |
14 | 2, 13 | eqtri 2755 | 1 ⊢ (iEdg‘𝑆) = 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∉ wnel 3041 {crab 3427 Vcvv 3469 ∖ cdif 3941 {csn 4624 ⟨cop 4630 dom cdm 5672 ↾ cres 5674 ‘cfv 6542 Vtxcvtx 28796 iEdgciedg 28797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 df-2nd 7988 df-iedg 28799 |
This theorem is referenced by: vtxdginducedm1lem2 29341 vtxdginducedm1lem3 29342 vtxdginducedm1fi 29345 finsumvtxdg2ssteplem4 29349 |
Copyright terms: Public domain | W3C validator |