![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for vtxdginducedm1 29413: the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = ⟨𝐾, 𝑃⟩ |
Ref | Expression |
---|---|
vtxdginducedm1lem1 | ⊢ (iEdg‘𝑆) = 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.s | . . 3 ⊢ 𝑆 = ⟨𝐾, 𝑃⟩ | |
2 | 1 | fveq2i 6897 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘⟨𝐾, 𝑃⟩) |
3 | vtxdginducedm1.k | . . . 4 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | fvexi 6908 | . . . . 5 ⊢ 𝑉 ∈ V |
6 | 5 | difexi 5330 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
7 | 3, 6 | eqeltri 2821 | . . 3 ⊢ 𝐾 ∈ V |
8 | vtxdginducedm1.p | . . . 4 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
9 | vtxdginducedm1.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
10 | 9 | fvexi 6908 | . . . . 5 ⊢ 𝐸 ∈ V |
11 | 10 | resex 6033 | . . . 4 ⊢ (𝐸 ↾ 𝐼) ∈ V |
12 | 8, 11 | eqeltri 2821 | . . 3 ⊢ 𝑃 ∈ V |
13 | 7, 12 | opiedgfvi 28879 | . 2 ⊢ (iEdg‘⟨𝐾, 𝑃⟩) = 𝑃 |
14 | 2, 13 | eqtri 2753 | 1 ⊢ (iEdg‘𝑆) = 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∉ wnel 3036 {crab 3419 Vcvv 3463 ∖ cdif 3942 {csn 4629 ⟨cop 4635 dom cdm 5677 ↾ cres 5679 ‘cfv 6547 Vtxcvtx 28865 iEdgciedg 28866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6499 df-fun 6549 df-fv 6555 df-2nd 7993 df-iedg 28868 |
This theorem is referenced by: vtxdginducedm1lem2 29410 vtxdginducedm1lem3 29411 vtxdginducedm1fi 29414 finsumvtxdg2ssteplem4 29418 |
Copyright terms: Public domain | W3C validator |