MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem1 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem1 29519
Description: Lemma 1 for vtxdginducedm1 29523: the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
Assertion
Ref Expression
vtxdginducedm1lem1 (iEdg‘𝑆) = 𝑃

Proof of Theorem vtxdginducedm1lem1
StepHypRef Expression
1 vtxdginducedm1.s . . 3 𝑆 = ⟨𝐾, 𝑃
21fveq2i 6879 . 2 (iEdg‘𝑆) = (iEdg‘⟨𝐾, 𝑃⟩)
3 vtxdginducedm1.k . . . 4 𝐾 = (𝑉 ∖ {𝑁})
4 vtxdginducedm1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
54fvexi 6890 . . . . 5 𝑉 ∈ V
65difexi 5300 . . . 4 (𝑉 ∖ {𝑁}) ∈ V
73, 6eqeltri 2830 . . 3 𝐾 ∈ V
8 vtxdginducedm1.p . . . 4 𝑃 = (𝐸𝐼)
9 vtxdginducedm1.e . . . . . 6 𝐸 = (iEdg‘𝐺)
109fvexi 6890 . . . . 5 𝐸 ∈ V
1110resex 6016 . . . 4 (𝐸𝐼) ∈ V
128, 11eqeltri 2830 . . 3 𝑃 ∈ V
137, 12opiedgfvi 28989 . 2 (iEdg‘⟨𝐾, 𝑃⟩) = 𝑃
142, 13eqtri 2758 1 (iEdg‘𝑆) = 𝑃
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wnel 3036  {crab 3415  Vcvv 3459  cdif 3923  {csn 4601  cop 4607  dom cdm 5654  cres 5656  cfv 6531  Vtxcvtx 28975  iEdgciedg 28976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fv 6539  df-2nd 7989  df-iedg 28978
This theorem is referenced by:  vtxdginducedm1lem2  29520  vtxdginducedm1lem3  29521  vtxdginducedm1fi  29524  finsumvtxdg2ssteplem4  29528
  Copyright terms: Public domain W3C validator