![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for vtxdginducedm1 28800: the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = ⟨𝐾, 𝑃⟩ |
Ref | Expression |
---|---|
vtxdginducedm1lem1 | ⊢ (iEdg‘𝑆) = 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.s | . . 3 ⊢ 𝑆 = ⟨𝐾, 𝑃⟩ | |
2 | 1 | fveq2i 6895 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘⟨𝐾, 𝑃⟩) |
3 | vtxdginducedm1.k | . . . 4 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | fvexi 6906 | . . . . 5 ⊢ 𝑉 ∈ V |
6 | 5 | difexi 5329 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
7 | 3, 6 | eqeltri 2830 | . . 3 ⊢ 𝐾 ∈ V |
8 | vtxdginducedm1.p | . . . 4 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
9 | vtxdginducedm1.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
10 | 9 | fvexi 6906 | . . . . 5 ⊢ 𝐸 ∈ V |
11 | 10 | resex 6030 | . . . 4 ⊢ (𝐸 ↾ 𝐼) ∈ V |
12 | 8, 11 | eqeltri 2830 | . . 3 ⊢ 𝑃 ∈ V |
13 | 7, 12 | opiedgfvi 28270 | . 2 ⊢ (iEdg‘⟨𝐾, 𝑃⟩) = 𝑃 |
14 | 2, 13 | eqtri 2761 | 1 ⊢ (iEdg‘𝑆) = 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∉ wnel 3047 {crab 3433 Vcvv 3475 ∖ cdif 3946 {csn 4629 ⟨cop 4635 dom cdm 5677 ↾ cres 5679 ‘cfv 6544 Vtxcvtx 28256 iEdgciedg 28257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-fv 6552 df-2nd 7976 df-iedg 28259 |
This theorem is referenced by: vtxdginducedm1lem2 28797 vtxdginducedm1lem3 28798 vtxdginducedm1fi 28801 finsumvtxdg2ssteplem4 28805 |
Copyright terms: Public domain | W3C validator |