MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem1 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem1 29485
Description: Lemma 1 for vtxdginducedm1 29489: the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
Assertion
Ref Expression
vtxdginducedm1lem1 (iEdg‘𝑆) = 𝑃

Proof of Theorem vtxdginducedm1lem1
StepHypRef Expression
1 vtxdginducedm1.s . . 3 𝑆 = ⟨𝐾, 𝑃
21fveq2i 6825 . 2 (iEdg‘𝑆) = (iEdg‘⟨𝐾, 𝑃⟩)
3 vtxdginducedm1.k . . . 4 𝐾 = (𝑉 ∖ {𝑁})
4 vtxdginducedm1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
54fvexi 6836 . . . . 5 𝑉 ∈ V
65difexi 5269 . . . 4 (𝑉 ∖ {𝑁}) ∈ V
73, 6eqeltri 2824 . . 3 𝐾 ∈ V
8 vtxdginducedm1.p . . . 4 𝑃 = (𝐸𝐼)
9 vtxdginducedm1.e . . . . . 6 𝐸 = (iEdg‘𝐺)
109fvexi 6836 . . . . 5 𝐸 ∈ V
1110resex 5980 . . . 4 (𝐸𝐼) ∈ V
128, 11eqeltri 2824 . . 3 𝑃 ∈ V
137, 12opiedgfvi 28955 . 2 (iEdg‘⟨𝐾, 𝑃⟩) = 𝑃
142, 13eqtri 2752 1 (iEdg‘𝑆) = 𝑃
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wnel 3029  {crab 3394  Vcvv 3436  cdif 3900  {csn 4577  cop 4583  dom cdm 5619  cres 5621  cfv 6482  Vtxcvtx 28941  iEdgciedg 28942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-2nd 7925  df-iedg 28944
This theorem is referenced by:  vtxdginducedm1lem2  29486  vtxdginducedm1lem3  29487  vtxdginducedm1fi  29490  finsumvtxdg2ssteplem4  29494
  Copyright terms: Public domain W3C validator