MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem1 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem1 27906
Description: Lemma 1 for vtxdginducedm1 27910: the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
Assertion
Ref Expression
vtxdginducedm1lem1 (iEdg‘𝑆) = 𝑃

Proof of Theorem vtxdginducedm1lem1
StepHypRef Expression
1 vtxdginducedm1.s . . 3 𝑆 = ⟨𝐾, 𝑃
21fveq2i 6777 . 2 (iEdg‘𝑆) = (iEdg‘⟨𝐾, 𝑃⟩)
3 vtxdginducedm1.k . . . 4 𝐾 = (𝑉 ∖ {𝑁})
4 vtxdginducedm1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
54fvexi 6788 . . . . 5 𝑉 ∈ V
65difexi 5252 . . . 4 (𝑉 ∖ {𝑁}) ∈ V
73, 6eqeltri 2835 . . 3 𝐾 ∈ V
8 vtxdginducedm1.p . . . 4 𝑃 = (𝐸𝐼)
9 vtxdginducedm1.e . . . . . 6 𝐸 = (iEdg‘𝐺)
109fvexi 6788 . . . . 5 𝐸 ∈ V
1110resex 5939 . . . 4 (𝐸𝐼) ∈ V
128, 11eqeltri 2835 . . 3 𝑃 ∈ V
137, 12opiedgfvi 27380 . 2 (iEdg‘⟨𝐾, 𝑃⟩) = 𝑃
142, 13eqtri 2766 1 (iEdg‘𝑆) = 𝑃
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wnel 3049  {crab 3068  Vcvv 3432  cdif 3884  {csn 4561  cop 4567  dom cdm 5589  cres 5591  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-2nd 7832  df-iedg 27369
This theorem is referenced by:  vtxdginducedm1lem2  27907  vtxdginducedm1lem3  27908  vtxdginducedm1fi  27911  finsumvtxdg2ssteplem4  27915
  Copyright terms: Public domain W3C validator