MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem3 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem3 29577
Description: Lemma 3 for vtxdginducedm1 29579: an edge in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
Assertion
Ref Expression
vtxdginducedm1lem3 (𝐻𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸𝐻))
Distinct variable group:   𝑖,𝐸
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝐼(𝑖)   𝐾(𝑖)   𝑁(𝑖)   𝑉(𝑖)

Proof of Theorem vtxdginducedm1lem3
StepHypRef Expression
1 vtxdginducedm1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 vtxdginducedm1.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 vtxdginducedm1.k . . . . 5 𝐾 = (𝑉 ∖ {𝑁})
4 vtxdginducedm1.i . . . . 5 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 vtxdginducedm1.p . . . . 5 𝑃 = (𝐸𝐼)
6 vtxdginducedm1.s . . . . 5 𝑆 = ⟨𝐾, 𝑃
71, 2, 3, 4, 5, 6vtxdginducedm1lem1 29575 . . . 4 (iEdg‘𝑆) = 𝑃
87, 5eqtri 2768 . . 3 (iEdg‘𝑆) = (𝐸𝐼)
98fveq1i 6921 . 2 ((iEdg‘𝑆)‘𝐻) = ((𝐸𝐼)‘𝐻)
10 fvres 6939 . 2 (𝐻𝐼 → ((𝐸𝐼)‘𝐻) = (𝐸𝐻))
119, 10eqtrid 2792 1 (𝐻𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wnel 3052  {crab 3443  cdif 3973  {csn 4648  cop 4654  dom cdm 5700  cres 5702  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-2nd 8031  df-iedg 29034
This theorem is referenced by:  vtxdginducedm1  29579
  Copyright terms: Public domain W3C validator