| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for vtxdginducedm1 29522: an edge in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
| vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
| vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
| Ref | Expression |
|---|---|
| vtxdginducedm1lem3 | ⊢ (𝐻 ∈ 𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdginducedm1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vtxdginducedm1.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | vtxdginducedm1.k | . . . . 5 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
| 4 | vtxdginducedm1.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
| 5 | vtxdginducedm1.p | . . . . 5 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
| 6 | vtxdginducedm1.s | . . . . 5 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
| 7 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 29518 | . . . 4 ⊢ (iEdg‘𝑆) = 𝑃 |
| 8 | 7, 5 | eqtri 2754 | . . 3 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐼) |
| 9 | 8 | fveq1i 6823 | . 2 ⊢ ((iEdg‘𝑆)‘𝐻) = ((𝐸 ↾ 𝐼)‘𝐻) |
| 10 | fvres 6841 | . 2 ⊢ (𝐻 ∈ 𝐼 → ((𝐸 ↾ 𝐼)‘𝐻) = (𝐸‘𝐻)) | |
| 11 | 9, 10 | eqtrid 2778 | 1 ⊢ (𝐻 ∈ 𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 {crab 3395 ∖ cdif 3894 {csn 4573 〈cop 4579 dom cdm 5614 ↾ cres 5616 ‘cfv 6481 Vtxcvtx 28974 iEdgciedg 28975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-2nd 7922 df-iedg 28977 |
| This theorem is referenced by: vtxdginducedm1 29522 |
| Copyright terms: Public domain | W3C validator |