MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem3 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem3 29476
Description: Lemma 3 for vtxdginducedm1 29478: an edge in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
Assertion
Ref Expression
vtxdginducedm1lem3 (𝐻𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸𝐻))
Distinct variable group:   𝑖,𝐸
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝐼(𝑖)   𝐾(𝑖)   𝑁(𝑖)   𝑉(𝑖)

Proof of Theorem vtxdginducedm1lem3
StepHypRef Expression
1 vtxdginducedm1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 vtxdginducedm1.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 vtxdginducedm1.k . . . . 5 𝐾 = (𝑉 ∖ {𝑁})
4 vtxdginducedm1.i . . . . 5 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 vtxdginducedm1.p . . . . 5 𝑃 = (𝐸𝐼)
6 vtxdginducedm1.s . . . . 5 𝑆 = ⟨𝐾, 𝑃
71, 2, 3, 4, 5, 6vtxdginducedm1lem1 29474 . . . 4 (iEdg‘𝑆) = 𝑃
87, 5eqtri 2753 . . 3 (iEdg‘𝑆) = (𝐸𝐼)
98fveq1i 6862 . 2 ((iEdg‘𝑆)‘𝐻) = ((𝐸𝐼)‘𝐻)
10 fvres 6880 . 2 (𝐻𝐼 → ((𝐸𝐼)‘𝐻) = (𝐸𝐻))
119, 10eqtrid 2777 1 (𝐻𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wnel 3030  {crab 3408  cdif 3914  {csn 4592  cop 4598  dom cdm 5641  cres 5643  cfv 6514  Vtxcvtx 28930  iEdgciedg 28931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-2nd 7972  df-iedg 28933
This theorem is referenced by:  vtxdginducedm1  29478
  Copyright terms: Public domain W3C validator