MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem3 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem3 29063
Description: Lemma 3 for vtxdginducedm1 29065: an edge in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
Assertion
Ref Expression
vtxdginducedm1lem3 (𝐻𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸𝐻))
Distinct variable group:   𝑖,𝐸
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝐼(𝑖)   𝐾(𝑖)   𝑁(𝑖)   𝑉(𝑖)

Proof of Theorem vtxdginducedm1lem3
StepHypRef Expression
1 vtxdginducedm1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 vtxdginducedm1.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 vtxdginducedm1.k . . . . 5 𝐾 = (𝑉 ∖ {𝑁})
4 vtxdginducedm1.i . . . . 5 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 vtxdginducedm1.p . . . . 5 𝑃 = (𝐸𝐼)
6 vtxdginducedm1.s . . . . 5 𝑆 = ⟨𝐾, 𝑃
71, 2, 3, 4, 5, 6vtxdginducedm1lem1 29061 . . . 4 (iEdg‘𝑆) = 𝑃
87, 5eqtri 2758 . . 3 (iEdg‘𝑆) = (𝐸𝐼)
98fveq1i 6893 . 2 ((iEdg‘𝑆)‘𝐻) = ((𝐸𝐼)‘𝐻)
10 fvres 6911 . 2 (𝐻𝐼 → ((𝐸𝐼)‘𝐻) = (𝐸𝐻))
119, 10eqtrid 2782 1 (𝐻𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wnel 3044  {crab 3430  cdif 3946  {csn 4629  cop 4635  dom cdm 5677  cres 5679  cfv 6544  Vtxcvtx 28521  iEdgciedg 28522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-2nd 7980  df-iedg 28524
This theorem is referenced by:  vtxdginducedm1  29065
  Copyright terms: Public domain W3C validator