![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for vtxdginducedm1 29579: an edge in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
Ref | Expression |
---|---|
vtxdginducedm1lem3 | ⊢ (𝐻 ∈ 𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdginducedm1.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | vtxdginducedm1.k | . . . . 5 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
5 | vtxdginducedm1.p | . . . . 5 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
6 | vtxdginducedm1.s | . . . . 5 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
7 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 29575 | . . . 4 ⊢ (iEdg‘𝑆) = 𝑃 |
8 | 7, 5 | eqtri 2768 | . . 3 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐼) |
9 | 8 | fveq1i 6921 | . 2 ⊢ ((iEdg‘𝑆)‘𝐻) = ((𝐸 ↾ 𝐼)‘𝐻) |
10 | fvres 6939 | . 2 ⊢ (𝐻 ∈ 𝐼 → ((𝐸 ↾ 𝐼)‘𝐻) = (𝐸‘𝐻)) | |
11 | 9, 10 | eqtrid 2792 | 1 ⊢ (𝐻 ∈ 𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 {crab 3443 ∖ cdif 3973 {csn 4648 〈cop 4654 dom cdm 5700 ↾ cres 5702 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-2nd 8031 df-iedg 29034 |
This theorem is referenced by: vtxdginducedm1 29579 |
Copyright terms: Public domain | W3C validator |