Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for vtxdginducedm1 27891: an edge in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
Ref | Expression |
---|---|
vtxdginducedm1lem3 | ⊢ (𝐻 ∈ 𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdginducedm1.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | vtxdginducedm1.k | . . . . 5 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
5 | vtxdginducedm1.p | . . . . 5 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
6 | vtxdginducedm1.s | . . . . 5 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
7 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 27887 | . . . 4 ⊢ (iEdg‘𝑆) = 𝑃 |
8 | 7, 5 | eqtri 2767 | . . 3 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐼) |
9 | 8 | fveq1i 6769 | . 2 ⊢ ((iEdg‘𝑆)‘𝐻) = ((𝐸 ↾ 𝐼)‘𝐻) |
10 | fvres 6787 | . 2 ⊢ (𝐻 ∈ 𝐼 → ((𝐸 ↾ 𝐼)‘𝐻) = (𝐸‘𝐻)) | |
11 | 9, 10 | eqtrid 2791 | 1 ⊢ (𝐻 ∈ 𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∉ wnel 3050 {crab 3069 ∖ cdif 3888 {csn 4566 〈cop 4572 dom cdm 5588 ↾ cres 5590 ‘cfv 6430 Vtxcvtx 27347 iEdgciedg 27348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-iota 6388 df-fun 6432 df-fv 6438 df-2nd 7818 df-iedg 27350 |
This theorem is referenced by: vtxdginducedm1 27891 |
Copyright terms: Public domain | W3C validator |