Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uvtxnbgrvtx | Structured version Visualization version GIF version |
Description: A universal vertex is neighbor of all other vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) |
Ref | Expression |
---|---|
uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
uvtxnbgrvtx | ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxel.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | vtxnbuvtx 27661 | . . 3 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) |
3 | eleq1w 2821 | . . . . . . 7 ⊢ (𝑛 = 𝑣 → (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑣 ∈ (𝐺 NeighbVtx 𝑁))) | |
4 | 3 | rspcva 3550 | . . . . . 6 ⊢ ((𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) → 𝑣 ∈ (𝐺 NeighbVtx 𝑁)) |
5 | nbgrsym 27633 | . . . . . . 7 ⊢ (𝑣 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∈ (𝐺 NeighbVtx 𝑣)) | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∈ (𝐺 NeighbVtx 𝑣))) |
7 | 4, 6 | syl5ibcom 244 | . . . . 5 ⊢ ((𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣))) |
8 | 7 | expcom 413 | . . . 4 ⊢ (∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣)))) |
9 | 8 | com23 86 | . . 3 ⊢ (∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁) → (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣)))) |
10 | 2, 9 | mpcom 38 | . 2 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣))) |
11 | 10 | ralrimiv 3106 | 1 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 {csn 4558 ‘cfv 6418 (class class class)co 7255 Vtxcvtx 27269 NeighbVtx cnbgr 27602 UnivVtxcuvtx 27655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-nbgr 27603 df-uvtx 27656 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |