| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvtxnbgrvtx | Structured version Visualization version GIF version | ||
| Description: A universal vertex is neighbor of all other vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) |
| Ref | Expression |
|---|---|
| uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| uvtxnbgrvtx | ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvtxel.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | vtxnbuvtx 29369 | . . 3 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) |
| 3 | eleq1w 2814 | . . . . . . 7 ⊢ (𝑛 = 𝑣 → (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑣 ∈ (𝐺 NeighbVtx 𝑁))) | |
| 4 | 3 | rspcva 3570 | . . . . . 6 ⊢ ((𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) → 𝑣 ∈ (𝐺 NeighbVtx 𝑁)) |
| 5 | nbgrsym 29341 | . . . . . . 7 ⊢ (𝑣 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∈ (𝐺 NeighbVtx 𝑣)) | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∈ (𝐺 NeighbVtx 𝑣))) |
| 7 | 4, 6 | syl5ibcom 245 | . . . . 5 ⊢ ((𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣))) |
| 8 | 7 | expcom 413 | . . . 4 ⊢ (∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣)))) |
| 9 | 8 | com23 86 | . . 3 ⊢ (∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁) → (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣)))) |
| 10 | 2, 9 | mpcom 38 | . 2 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣))) |
| 11 | 10 | ralrimiv 3123 | 1 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3894 {csn 4573 ‘cfv 6481 (class class class)co 7346 Vtxcvtx 28974 NeighbVtx cnbgr 29310 UnivVtxcuvtx 29363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-nbgr 29311 df-uvtx 29364 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |