MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxnbgrvtx Structured version   Visualization version   GIF version

Theorem uvtxnbgrvtx 29377
Description: A universal vertex is neighbor of all other vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.)
Hypothesis
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxnbgrvtx (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑁   𝑣,𝑉

Proof of Theorem uvtxnbgrvtx
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxel.v . . . 4 𝑉 = (Vtx‘𝐺)
21vtxnbuvtx 29375 . . 3 (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
3 eleq1w 2818 . . . . . . 7 (𝑛 = 𝑣 → (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑣 ∈ (𝐺 NeighbVtx 𝑁)))
43rspcva 3604 . . . . . 6 ((𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) → 𝑣 ∈ (𝐺 NeighbVtx 𝑁))
5 nbgrsym 29347 . . . . . . 7 (𝑣 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∈ (𝐺 NeighbVtx 𝑣))
65a1i 11 . . . . . 6 (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∈ (𝐺 NeighbVtx 𝑣)))
74, 6syl5ibcom 245 . . . . 5 ((𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣)))
87expcom 413 . . . 4 (∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣))))
98com23 86 . . 3 (∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁) → (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣))))
102, 9mpcom 38 . 2 (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣)))
1110ralrimiv 3132 1 (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  cdif 3928  {csn 4606  cfv 6536  (class class class)co 7410  Vtxcvtx 28980   NeighbVtx cnbgr 29316  UnivVtxcuvtx 29369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-nbgr 29317  df-uvtx 29370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator