Step | Hyp | Ref
| Expression |
1 | | elex 3492 |
. . . . 5
β’ (π β π΄ β π β V) |
2 | | xpeq12 5700 |
. . . . . . . . 9
β’ ((π‘ = π β§ π‘ = π) β (π‘ Γ π‘) = (π Γ π)) |
3 | 2 | anidms 567 |
. . . . . . . 8
β’ (π‘ = π β (π‘ Γ π‘) = (π Γ π)) |
4 | 3 | oveq2d 7421 |
. . . . . . 7
β’ (π‘ = π β (β*
βm (π‘
Γ π‘)) =
(β* βm (π Γ π))) |
5 | | raleq 3322 |
. . . . . . . . . 10
β’ (π‘ = π β (βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)) β βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))) |
6 | 5 | anbi2d 629 |
. . . . . . . . 9
β’ (π‘ = π β ((((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))))) |
7 | 6 | raleqbi1dv 3333 |
. . . . . . . 8
β’ (π‘ = π β (βπ¦ β π‘ (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))))) |
8 | 7 | raleqbi1dv 3333 |
. . . . . . 7
β’ (π‘ = π β (βπ₯ β π‘ βπ¦ β π‘ (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))))) |
9 | 4, 8 | rabeqbidv 3449 |
. . . . . 6
β’ (π‘ = π β {π β (β*
βm (π‘
Γ π‘)) β£
βπ₯ β π‘ βπ¦ β π‘ (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} = {π β (β*
βm (π
Γ π)) β£
βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
10 | | df-xmet 20929 |
. . . . . 6
β’
βMet = (π‘
β V β¦ {π β
(β* βm (π‘ Γ π‘)) β£ βπ₯ β π‘ βπ¦ β π‘ (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π‘ (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
11 | | ovex 7438 |
. . . . . . 7
β’
(β* βm (π Γ π)) β V |
12 | 11 | rabex 5331 |
. . . . . 6
β’ {π β (β*
βm (π
Γ π)) β£
βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} β V |
13 | 9, 10, 12 | fvmpt 6995 |
. . . . 5
β’ (π β V β
(βMetβπ) =
{π β
(β* βm (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
14 | 1, 13 | syl 17 |
. . . 4
β’ (π β π΄ β (βMetβπ) = {π β (β*
βm (π
Γ π)) β£
βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) |
15 | 14 | eleq2d 2819 |
. . 3
β’ (π β π΄ β (π· β (βMetβπ) β π· β {π β (β*
βm (π
Γ π)) β£
βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))})) |
16 | | oveq 7411 |
. . . . . . . 8
β’ (π = π· β (π₯ππ¦) = (π₯π·π¦)) |
17 | 16 | eqeq1d 2734 |
. . . . . . 7
β’ (π = π· β ((π₯ππ¦) = 0 β (π₯π·π¦) = 0)) |
18 | 17 | bibi1d 343 |
. . . . . 6
β’ (π = π· β (((π₯ππ¦) = 0 β π₯ = π¦) β ((π₯π·π¦) = 0 β π₯ = π¦))) |
19 | | oveq 7411 |
. . . . . . . . 9
β’ (π = π· β (π§ππ₯) = (π§π·π₯)) |
20 | | oveq 7411 |
. . . . . . . . 9
β’ (π = π· β (π§ππ¦) = (π§π·π¦)) |
21 | 19, 20 | oveq12d 7423 |
. . . . . . . 8
β’ (π = π· β ((π§ππ₯) +π (π§ππ¦)) = ((π§π·π₯) +π (π§π·π¦))) |
22 | 16, 21 | breq12d 5160 |
. . . . . . 7
β’ (π = π· β ((π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)) β (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) |
23 | 22 | ralbidv 3177 |
. . . . . 6
β’ (π = π· β (βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)) β βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) |
24 | 18, 23 | anbi12d 631 |
. . . . 5
β’ (π = π· β ((((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
25 | 24 | 2ralbidv 3218 |
. . . 4
β’ (π = π· β (βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦))) β βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
26 | 25 | elrab 3682 |
. . 3
β’ (π· β {π β (β*
βm (π
Γ π)) β£
βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))} β (π· β (β*
βm (π
Γ π)) β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
27 | 15, 26 | bitrdi 286 |
. 2
β’ (π β π΄ β (π· β (βMetβπ) β (π· β (β*
βm (π
Γ π)) β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
28 | | xrex 12967 |
. . . 4
β’
β* β V |
29 | | sqxpexg 7738 |
. . . 4
β’ (π β π΄ β (π Γ π) β V) |
30 | | elmapg 8829 |
. . . 4
β’
((β* β V β§ (π Γ π) β V) β (π· β (β*
βm (π
Γ π)) β π·:(π Γ π)βΆβ*)) |
31 | 28, 29, 30 | sylancr 587 |
. . 3
β’ (π β π΄ β (π· β (β*
βm (π
Γ π)) β π·:(π Γ π)βΆβ*)) |
32 | 31 | anbi1d 630 |
. 2
β’ (π β π΄ β ((π· β (β*
βm (π
Γ π)) β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
33 | 27, 32 | bitrd 278 |
1
β’ (π β π΄ β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |