MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxmet Structured version   Visualization version   GIF version

Theorem isxmet 24268
Description: Express the predicate "𝐷 is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
isxmet (𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem isxmet
Dummy variables 𝑑 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3485 . . . . 5 (𝑋𝐴𝑋 ∈ V)
2 xpeq12 5684 . . . . . . . . 9 ((𝑡 = 𝑋𝑡 = 𝑋) → (𝑡 × 𝑡) = (𝑋 × 𝑋))
32anidms 566 . . . . . . . 8 (𝑡 = 𝑋 → (𝑡 × 𝑡) = (𝑋 × 𝑋))
43oveq2d 7426 . . . . . . 7 (𝑡 = 𝑋 → (ℝ*m (𝑡 × 𝑡)) = (ℝ*m (𝑋 × 𝑋)))
5 raleq 3306 . . . . . . . . . 10 (𝑡 = 𝑋 → (∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))
65anbi2d 630 . . . . . . . . 9 (𝑡 = 𝑋 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
76raleqbi1dv 3321 . . . . . . . 8 (𝑡 = 𝑋 → (∀𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
87raleqbi1dv 3321 . . . . . . 7 (𝑡 = 𝑋 → (∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))))
94, 8rabeqbidv 3439 . . . . . 6 (𝑡 = 𝑋 → {𝑑 ∈ (ℝ*m (𝑡 × 𝑡)) ∣ ∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ*m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
10 df-xmet 21313 . . . . . 6 ∞Met = (𝑡 ∈ V ↦ {𝑑 ∈ (ℝ*m (𝑡 × 𝑡)) ∣ ∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
11 ovex 7443 . . . . . . 7 (ℝ*m (𝑋 × 𝑋)) ∈ V
1211rabex 5314 . . . . . 6 {𝑑 ∈ (ℝ*m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V
139, 10, 12fvmpt 6991 . . . . 5 (𝑋 ∈ V → (∞Met‘𝑋) = {𝑑 ∈ (ℝ*m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
141, 13syl 17 . . . 4 (𝑋𝐴 → (∞Met‘𝑋) = {𝑑 ∈ (ℝ*m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
1514eleq2d 2821 . . 3 (𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ*m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}))
16 oveq 7416 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
1716eqeq1d 2738 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
1817bibi1d 343 . . . . . 6 (𝑑 = 𝐷 → (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)))
19 oveq 7416 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥))
20 oveq 7416 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦))
2119, 20oveq12d 7428 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
2216, 21breq12d 5137 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
2322ralbidv 3164 . . . . . 6 (𝑑 = 𝐷 → (∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
2418, 23anbi12d 632 . . . . 5 (𝑑 = 𝐷 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
25242ralbidv 3209 . . . 4 (𝑑 = 𝐷 → (∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
2625elrab 3676 . . 3 (𝐷 ∈ {𝑑 ∈ (ℝ*m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ*m (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
2715, 26bitrdi 287 . 2 (𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷 ∈ (ℝ*m (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
28 xrex 13008 . . . 4 * ∈ V
29 sqxpexg 7754 . . . 4 (𝑋𝐴 → (𝑋 × 𝑋) ∈ V)
30 elmapg 8858 . . . 4 ((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (𝐷 ∈ (ℝ*m (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*))
3128, 29, 30sylancr 587 . . 3 (𝑋𝐴 → (𝐷 ∈ (ℝ*m (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*))
3231anbi1d 631 . 2 (𝑋𝐴 → ((𝐷 ∈ (ℝ*m (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
3327, 32bitrd 279 1 (𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464   class class class wbr 5124   × cxp 5657  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  0cc0 11134  *cxr 11273  cle 11275   +𝑒 cxad 13131  ∞Metcxmet 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-xr 11278  df-xmet 21313
This theorem is referenced by:  isxmetd  24270  xmetf  24273  ismet2  24277  xmeteq0  24282  xmettri2  24284  imasf1oxmet  24319  pstmxmet  33933
  Copyright terms: Public domain W3C validator