| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elex 3500 | . . . . 5
⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ V) | 
| 2 |  | xpeq12 5709 | . . . . . . . . 9
⊢ ((𝑡 = 𝑋 ∧ 𝑡 = 𝑋) → (𝑡 × 𝑡) = (𝑋 × 𝑋)) | 
| 3 | 2 | anidms 566 | . . . . . . . 8
⊢ (𝑡 = 𝑋 → (𝑡 × 𝑡) = (𝑋 × 𝑋)) | 
| 4 | 3 | oveq2d 7448 | . . . . . . 7
⊢ (𝑡 = 𝑋 → (ℝ*
↑m (𝑡
× 𝑡)) =
(ℝ* ↑m (𝑋 × 𝑋))) | 
| 5 |  | raleq 3322 | . . . . . . . . . 10
⊢ (𝑡 = 𝑋 → (∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))) | 
| 6 | 5 | anbi2d 630 | . . . . . . . . 9
⊢ (𝑡 = 𝑋 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))) | 
| 7 | 6 | raleqbi1dv 3337 | . . . . . . . 8
⊢ (𝑡 = 𝑋 → (∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))) | 
| 8 | 7 | raleqbi1dv 3337 | . . . . . . 7
⊢ (𝑡 = 𝑋 → (∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))))) | 
| 9 | 4, 8 | rabeqbidv 3454 | . . . . . 6
⊢ (𝑡 = 𝑋 → {𝑑 ∈ (ℝ*
↑m (𝑡
× 𝑡)) ∣
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ*
↑m (𝑋
× 𝑋)) ∣
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | 
| 10 |  | df-xmet 21358 | . . . . . 6
⊢
∞Met = (𝑡
∈ V ↦ {𝑑 ∈
(ℝ* ↑m (𝑡 × 𝑡)) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | 
| 11 |  | ovex 7465 | . . . . . . 7
⊢
(ℝ* ↑m (𝑋 × 𝑋)) ∈ V | 
| 12 | 11 | rabex 5338 | . . . . . 6
⊢ {𝑑 ∈ (ℝ*
↑m (𝑋
× 𝑋)) ∣
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ∈ V | 
| 13 | 9, 10, 12 | fvmpt 7015 | . . . . 5
⊢ (𝑋 ∈ V →
(∞Met‘𝑋) =
{𝑑 ∈
(ℝ* ↑m (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | 
| 14 | 1, 13 | syl 17 | . . . 4
⊢ (𝑋 ∈ 𝐴 → (∞Met‘𝑋) = {𝑑 ∈ (ℝ*
↑m (𝑋
× 𝑋)) ∣
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | 
| 15 | 14 | eleq2d 2826 | . . 3
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ*
↑m (𝑋
× 𝑋)) ∣
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})) | 
| 16 |  | oveq 7438 | . . . . . . . 8
⊢ (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦)) | 
| 17 | 16 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0)) | 
| 18 | 17 | bibi1d 343 | . . . . . 6
⊢ (𝑑 = 𝐷 → (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))) | 
| 19 |  | oveq 7438 | . . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥)) | 
| 20 |  | oveq 7438 | . . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦)) | 
| 21 | 19, 20 | oveq12d 7450 | . . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) | 
| 22 | 16, 21 | breq12d 5155 | . . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) | 
| 23 | 22 | ralbidv 3177 | . . . . . 6
⊢ (𝑑 = 𝐷 → (∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)) ↔ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) | 
| 24 | 18, 23 | anbi12d 632 | . . . . 5
⊢ (𝑑 = 𝐷 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) | 
| 25 | 24 | 2ralbidv 3220 | . . . 4
⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) | 
| 26 | 25 | elrab 3691 | . . 3
⊢ (𝐷 ∈ {𝑑 ∈ (ℝ*
↑m (𝑋
× 𝑋)) ∣
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ*
↑m (𝑋
× 𝑋)) ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) | 
| 27 | 15, 26 | bitrdi 287 | . 2
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷 ∈ (ℝ*
↑m (𝑋
× 𝑋)) ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | 
| 28 |  | xrex 13030 | . . . 4
⊢
ℝ* ∈ V | 
| 29 |  | sqxpexg 7776 | . . . 4
⊢ (𝑋 ∈ 𝐴 → (𝑋 × 𝑋) ∈ V) | 
| 30 |  | elmapg 8880 | . . . 4
⊢
((ℝ* ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (𝐷 ∈ (ℝ*
↑m (𝑋
× 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*)) | 
| 31 | 28, 29, 30 | sylancr 587 | . . 3
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (ℝ*
↑m (𝑋
× 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ*)) | 
| 32 | 31 | anbi1d 631 | . 2
⊢ (𝑋 ∈ 𝐴 → ((𝐷 ∈ (ℝ*
↑m (𝑋
× 𝑋)) ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | 
| 33 | 27, 32 | bitrd 279 | 1
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |