Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovd Structured version   Visualization version   GIF version

Theorem rfovd 42737
Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
Assertion
Ref Expression
rfovd (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟   𝑥,𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑟   𝑥,𝐵   𝑦,𝐵,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑟)   𝐴(𝑦)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑟,𝑎,𝑏)

Proof of Theorem rfovd
StepHypRef Expression
1 rfovd.rf . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
21a1i 11 . 2 (𝜑𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦}))))
3 xpeq12 5700 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵))
43pweqd 4618 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵))
5 simpl 483 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
6 rabeq 3446 . . . . . 6 (𝑏 = 𝐵 → {𝑦𝑏𝑥𝑟𝑦} = {𝑦𝐵𝑥𝑟𝑦})
76adantl 482 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑦𝑏𝑥𝑟𝑦} = {𝑦𝐵𝑥𝑟𝑦})
85, 7mpteq12dv 5238 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦}) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦}))
94, 8mpteq12dv 5238 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
109adantl 482 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
11 rfovd.a . . 3 (𝜑𝐴𝑉)
1211elexd 3494 . 2 (𝜑𝐴 ∈ V)
13 rfovd.b . . 3 (𝜑𝐵𝑊)
1413elexd 3494 . 2 (𝜑𝐵 ∈ V)
1511, 13xpexd 7734 . . 3 (𝜑 → (𝐴 × 𝐵) ∈ V)
16 pwexg 5375 . . 3 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
17 mptexg 7219 . . 3 (𝒫 (𝐴 × 𝐵) ∈ V → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})) ∈ V)
1815, 16, 173syl 18 . 2 (𝜑 → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})) ∈ V)
192, 10, 12, 14, 18ovmpod 7556 1 (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  𝒫 cpw 4601   class class class wbr 5147  cmpt 5230   × cxp 5673  (class class class)co 7405  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410
This theorem is referenced by:  rfovfvd  42738  rfovcnvf1od  42740  fsovrfovd  42745
  Copyright terms: Public domain W3C validator