Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sblpnf Structured version   Visualization version   GIF version

Theorem sblpnf 44334
Description: The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 24336. (Contributed by Steve Rodriguez, 8-Nov-2015.)
Hypotheses
Ref Expression
sblpnf.s (𝜑𝑆 ∈ {ℝ, ℂ})
sblpnf.d 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
Assertion
Ref Expression
sblpnf ((𝜑𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)

Proof of Theorem sblpnf
StepHypRef Expression
1 sblpnf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 elpri 4625 . . 3 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
3 sblpnf.d . . . . 5 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
4 eqid 2735 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54remet 24729 . . . . . 6 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
6 xpeq12 5679 . . . . . . . . 9 ((𝑆 = ℝ ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ))
76anidms 566 . . . . . . . 8 (𝑆 = ℝ → (𝑆 × 𝑆) = (ℝ × ℝ))
87reseq2d 5966 . . . . . . 7 (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ)))
9 fveq2 6876 . . . . . . 7 (𝑆 = ℝ → (Met‘𝑆) = (Met‘ℝ))
108, 9eleq12d 2828 . . . . . 6 (𝑆 = ℝ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)))
115, 10mpbiri 258 . . . . 5 (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
123, 11eqeltrid 2838 . . . 4 (𝑆 = ℝ → 𝐷 ∈ (Met‘𝑆))
13 relco 6095 . . . . . . . . 9 Rel (abs ∘ − )
14 resdm 6013 . . . . . . . . 9 (Rel (abs ∘ − ) → ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − ))
1513, 14ax-mp 5 . . . . . . . 8 ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − )
16 absf 15356 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
17 ax-resscn 11186 . . . . . . . . . . . 12 ℝ ⊆ ℂ
18 fss 6722 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ)
1916, 17, 18mp2an 692 . . . . . . . . . . 11 abs:ℂ⟶ℂ
20 subf 11484 . . . . . . . . . . 11 − :(ℂ × ℂ)⟶ℂ
21 fco 6730 . . . . . . . . . . 11 ((abs:ℂ⟶ℂ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℂ)
2219, 20, 21mp2an 692 . . . . . . . . . 10 (abs ∘ − ):(ℂ × ℂ)⟶ℂ
2322fdmi 6717 . . . . . . . . 9 dom (abs ∘ − ) = (ℂ × ℂ)
2423reseq2i 5963 . . . . . . . 8 ((abs ∘ − ) ↾ dom (abs ∘ − )) = ((abs ∘ − ) ↾ (ℂ × ℂ))
2515, 24eqtr3i 2760 . . . . . . 7 (abs ∘ − ) = ((abs ∘ − ) ↾ (ℂ × ℂ))
26 cnmet 24710 . . . . . . 7 (abs ∘ − ) ∈ (Met‘ℂ)
2725, 26eqeltrri 2831 . . . . . 6 ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ)
28 xpeq12 5679 . . . . . . . . 9 ((𝑆 = ℂ ∧ 𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ))
2928anidms 566 . . . . . . . 8 (𝑆 = ℂ → (𝑆 × 𝑆) = (ℂ × ℂ))
3029reseq2d 5966 . . . . . . 7 (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ)))
31 fveq2 6876 . . . . . . 7 (𝑆 = ℂ → (Met‘𝑆) = (Met‘ℂ))
3230, 31eleq12d 2828 . . . . . 6 (𝑆 = ℂ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ)))
3327, 32mpbiri 258 . . . . 5 (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
343, 33eqeltrid 2838 . . . 4 (𝑆 = ℂ → 𝐷 ∈ (Met‘𝑆))
3512, 34jaoi 857 . . 3 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝐷 ∈ (Met‘𝑆))
361, 2, 353syl 18 . 2 (𝜑𝐷 ∈ (Met‘𝑆))
37 blpnf 24336 . 2 ((𝐷 ∈ (Met‘𝑆) ∧ 𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)
3836, 37sylan 580 1 ((𝜑𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wss 3926  {cpr 4603   × cxp 5652  dom cdm 5654  cres 5656  ccom 5658  Rel wrel 5659  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  +∞cpnf 11266  cmin 11466  abscabs 15253  Metcmet 21301  ballcbl 21302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310
This theorem is referenced by:  dvconstbi  44358
  Copyright terms: Public domain W3C validator