| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sblpnf | Structured version Visualization version GIF version | ||
| Description: The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 24301. (Contributed by Steve Rodriguez, 8-Nov-2015.) |
| Ref | Expression |
|---|---|
| sblpnf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| sblpnf.d | ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| sblpnf | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sblpnf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | elpri 4603 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 3 | sblpnf.d | . . . . 5 ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 5 | 4 | remet 24694 | . . . . . 6 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) |
| 6 | xpeq12 5648 | . . . . . . . . 9 ⊢ ((𝑆 = ℝ ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ)) | |
| 7 | 6 | anidms 566 | . . . . . . . 8 ⊢ (𝑆 = ℝ → (𝑆 × 𝑆) = (ℝ × ℝ)) |
| 8 | 7 | reseq2d 5934 | . . . . . . 7 ⊢ (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ))) |
| 9 | fveq2 6826 | . . . . . . 7 ⊢ (𝑆 = ℝ → (Met‘𝑆) = (Met‘ℝ)) | |
| 10 | 8, 9 | eleq12d 2822 | . . . . . 6 ⊢ (𝑆 = ℝ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ))) |
| 11 | 5, 10 | mpbiri 258 | . . . . 5 ⊢ (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
| 12 | 3, 11 | eqeltrid 2832 | . . . 4 ⊢ (𝑆 = ℝ → 𝐷 ∈ (Met‘𝑆)) |
| 13 | relco 6063 | . . . . . . . . 9 ⊢ Rel (abs ∘ − ) | |
| 14 | resdm 5981 | . . . . . . . . 9 ⊢ (Rel (abs ∘ − ) → ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − )) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − ) |
| 16 | absf 15263 | . . . . . . . . . . . 12 ⊢ abs:ℂ⟶ℝ | |
| 17 | ax-resscn 11085 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
| 18 | fss 6672 | . . . . . . . . . . . 12 ⊢ ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ) | |
| 19 | 16, 17, 18 | mp2an 692 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℂ |
| 20 | subf 11383 | . . . . . . . . . . 11 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 21 | fco 6680 | . . . . . . . . . . 11 ⊢ ((abs:ℂ⟶ℂ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℂ) | |
| 22 | 19, 20, 21 | mp2an 692 | . . . . . . . . . 10 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℂ |
| 23 | 22 | fdmi 6667 | . . . . . . . . 9 ⊢ dom (abs ∘ − ) = (ℂ × ℂ) |
| 24 | 23 | reseq2i 5931 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ dom (abs ∘ − )) = ((abs ∘ − ) ↾ (ℂ × ℂ)) |
| 25 | 15, 24 | eqtr3i 2754 | . . . . . . 7 ⊢ (abs ∘ − ) = ((abs ∘ − ) ↾ (ℂ × ℂ)) |
| 26 | cnmet 24675 | . . . . . . 7 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 27 | 25, 26 | eqeltrri 2825 | . . . . . 6 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ) |
| 28 | xpeq12 5648 | . . . . . . . . 9 ⊢ ((𝑆 = ℂ ∧ 𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ)) | |
| 29 | 28 | anidms 566 | . . . . . . . 8 ⊢ (𝑆 = ℂ → (𝑆 × 𝑆) = (ℂ × ℂ)) |
| 30 | 29 | reseq2d 5934 | . . . . . . 7 ⊢ (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ))) |
| 31 | fveq2 6826 | . . . . . . 7 ⊢ (𝑆 = ℂ → (Met‘𝑆) = (Met‘ℂ)) | |
| 32 | 30, 31 | eleq12d 2822 | . . . . . 6 ⊢ (𝑆 = ℂ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ))) |
| 33 | 27, 32 | mpbiri 258 | . . . . 5 ⊢ (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
| 34 | 3, 33 | eqeltrid 2832 | . . . 4 ⊢ (𝑆 = ℂ → 𝐷 ∈ (Met‘𝑆)) |
| 35 | 12, 34 | jaoi 857 | . . 3 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝐷 ∈ (Met‘𝑆)) |
| 36 | 1, 2, 35 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑆)) |
| 37 | blpnf 24301 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑆) ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) | |
| 38 | 36, 37 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {cpr 4581 × cxp 5621 dom cdm 5623 ↾ cres 5625 ∘ ccom 5627 Rel wrel 5628 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 +∞cpnf 11165 − cmin 11365 abscabs 15159 Metcmet 21265 ballcbl 21266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 |
| This theorem is referenced by: dvconstbi 44307 |
| Copyright terms: Public domain | W3C validator |