Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sblpnf | Structured version Visualization version GIF version |
Description: The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 23531. (Contributed by Steve Rodriguez, 8-Nov-2015.) |
Ref | Expression |
---|---|
sblpnf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
sblpnf.d | ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
sblpnf | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sblpnf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | elpri 4588 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
3 | sblpnf.d | . . . . 5 ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) | |
4 | eqid 2739 | . . . . . . 7 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
5 | 4 | remet 23934 | . . . . . 6 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) |
6 | xpeq12 5613 | . . . . . . . . 9 ⊢ ((𝑆 = ℝ ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ)) | |
7 | 6 | anidms 566 | . . . . . . . 8 ⊢ (𝑆 = ℝ → (𝑆 × 𝑆) = (ℝ × ℝ)) |
8 | 7 | reseq2d 5888 | . . . . . . 7 ⊢ (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ))) |
9 | fveq2 6768 | . . . . . . 7 ⊢ (𝑆 = ℝ → (Met‘𝑆) = (Met‘ℝ)) | |
10 | 8, 9 | eleq12d 2834 | . . . . . 6 ⊢ (𝑆 = ℝ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ))) |
11 | 5, 10 | mpbiri 257 | . . . . 5 ⊢ (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
12 | 3, 11 | eqeltrid 2844 | . . . 4 ⊢ (𝑆 = ℝ → 𝐷 ∈ (Met‘𝑆)) |
13 | relco 6145 | . . . . . . . . 9 ⊢ Rel (abs ∘ − ) | |
14 | resdm 5933 | . . . . . . . . 9 ⊢ (Rel (abs ∘ − ) → ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − )) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − ) |
16 | absf 15030 | . . . . . . . . . . . 12 ⊢ abs:ℂ⟶ℝ | |
17 | ax-resscn 10912 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
18 | fss 6613 | . . . . . . . . . . . 12 ⊢ ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ) | |
19 | 16, 17, 18 | mp2an 688 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℂ |
20 | subf 11206 | . . . . . . . . . . 11 ⊢ − :(ℂ × ℂ)⟶ℂ | |
21 | fco 6620 | . . . . . . . . . . 11 ⊢ ((abs:ℂ⟶ℂ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℂ) | |
22 | 19, 20, 21 | mp2an 688 | . . . . . . . . . 10 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℂ |
23 | 22 | fdmi 6608 | . . . . . . . . 9 ⊢ dom (abs ∘ − ) = (ℂ × ℂ) |
24 | 23 | reseq2i 5885 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ dom (abs ∘ − )) = ((abs ∘ − ) ↾ (ℂ × ℂ)) |
25 | 15, 24 | eqtr3i 2769 | . . . . . . 7 ⊢ (abs ∘ − ) = ((abs ∘ − ) ↾ (ℂ × ℂ)) |
26 | cnmet 23916 | . . . . . . 7 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
27 | 25, 26 | eqeltrri 2837 | . . . . . 6 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ) |
28 | xpeq12 5613 | . . . . . . . . 9 ⊢ ((𝑆 = ℂ ∧ 𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ)) | |
29 | 28 | anidms 566 | . . . . . . . 8 ⊢ (𝑆 = ℂ → (𝑆 × 𝑆) = (ℂ × ℂ)) |
30 | 29 | reseq2d 5888 | . . . . . . 7 ⊢ (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ))) |
31 | fveq2 6768 | . . . . . . 7 ⊢ (𝑆 = ℂ → (Met‘𝑆) = (Met‘ℂ)) | |
32 | 30, 31 | eleq12d 2834 | . . . . . 6 ⊢ (𝑆 = ℂ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ))) |
33 | 27, 32 | mpbiri 257 | . . . . 5 ⊢ (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
34 | 3, 33 | eqeltrid 2844 | . . . 4 ⊢ (𝑆 = ℂ → 𝐷 ∈ (Met‘𝑆)) |
35 | 12, 34 | jaoi 853 | . . 3 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝐷 ∈ (Met‘𝑆)) |
36 | 1, 2, 35 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑆)) |
37 | blpnf 23531 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑆) ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) | |
38 | 36, 37 | sylan 579 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 {cpr 4568 × cxp 5586 dom cdm 5588 ↾ cres 5590 ∘ ccom 5592 Rel wrel 5593 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 ℝcr 10854 +∞cpnf 10990 − cmin 11188 abscabs 14926 Metcmet 20564 ballcbl 20565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 |
This theorem is referenced by: dvconstbi 41905 |
Copyright terms: Public domain | W3C validator |