| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sblpnf | Structured version Visualization version GIF version | ||
| Description: The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 24336. (Contributed by Steve Rodriguez, 8-Nov-2015.) |
| Ref | Expression |
|---|---|
| sblpnf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| sblpnf.d | ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| sblpnf | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sblpnf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | elpri 4625 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 3 | sblpnf.d | . . . . 5 ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) | |
| 4 | eqid 2735 | . . . . . . 7 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 5 | 4 | remet 24729 | . . . . . 6 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) |
| 6 | xpeq12 5679 | . . . . . . . . 9 ⊢ ((𝑆 = ℝ ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ)) | |
| 7 | 6 | anidms 566 | . . . . . . . 8 ⊢ (𝑆 = ℝ → (𝑆 × 𝑆) = (ℝ × ℝ)) |
| 8 | 7 | reseq2d 5966 | . . . . . . 7 ⊢ (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ))) |
| 9 | fveq2 6876 | . . . . . . 7 ⊢ (𝑆 = ℝ → (Met‘𝑆) = (Met‘ℝ)) | |
| 10 | 8, 9 | eleq12d 2828 | . . . . . 6 ⊢ (𝑆 = ℝ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ))) |
| 11 | 5, 10 | mpbiri 258 | . . . . 5 ⊢ (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
| 12 | 3, 11 | eqeltrid 2838 | . . . 4 ⊢ (𝑆 = ℝ → 𝐷 ∈ (Met‘𝑆)) |
| 13 | relco 6095 | . . . . . . . . 9 ⊢ Rel (abs ∘ − ) | |
| 14 | resdm 6013 | . . . . . . . . 9 ⊢ (Rel (abs ∘ − ) → ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − )) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − ) |
| 16 | absf 15356 | . . . . . . . . . . . 12 ⊢ abs:ℂ⟶ℝ | |
| 17 | ax-resscn 11186 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
| 18 | fss 6722 | . . . . . . . . . . . 12 ⊢ ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ) | |
| 19 | 16, 17, 18 | mp2an 692 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℂ |
| 20 | subf 11484 | . . . . . . . . . . 11 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 21 | fco 6730 | . . . . . . . . . . 11 ⊢ ((abs:ℂ⟶ℂ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℂ) | |
| 22 | 19, 20, 21 | mp2an 692 | . . . . . . . . . 10 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℂ |
| 23 | 22 | fdmi 6717 | . . . . . . . . 9 ⊢ dom (abs ∘ − ) = (ℂ × ℂ) |
| 24 | 23 | reseq2i 5963 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ dom (abs ∘ − )) = ((abs ∘ − ) ↾ (ℂ × ℂ)) |
| 25 | 15, 24 | eqtr3i 2760 | . . . . . . 7 ⊢ (abs ∘ − ) = ((abs ∘ − ) ↾ (ℂ × ℂ)) |
| 26 | cnmet 24710 | . . . . . . 7 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 27 | 25, 26 | eqeltrri 2831 | . . . . . 6 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ) |
| 28 | xpeq12 5679 | . . . . . . . . 9 ⊢ ((𝑆 = ℂ ∧ 𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ)) | |
| 29 | 28 | anidms 566 | . . . . . . . 8 ⊢ (𝑆 = ℂ → (𝑆 × 𝑆) = (ℂ × ℂ)) |
| 30 | 29 | reseq2d 5966 | . . . . . . 7 ⊢ (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ))) |
| 31 | fveq2 6876 | . . . . . . 7 ⊢ (𝑆 = ℂ → (Met‘𝑆) = (Met‘ℂ)) | |
| 32 | 30, 31 | eleq12d 2828 | . . . . . 6 ⊢ (𝑆 = ℂ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ))) |
| 33 | 27, 32 | mpbiri 258 | . . . . 5 ⊢ (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
| 34 | 3, 33 | eqeltrid 2838 | . . . 4 ⊢ (𝑆 = ℂ → 𝐷 ∈ (Met‘𝑆)) |
| 35 | 12, 34 | jaoi 857 | . . 3 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝐷 ∈ (Met‘𝑆)) |
| 36 | 1, 2, 35 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑆)) |
| 37 | blpnf 24336 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑆) ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) | |
| 38 | 36, 37 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 {cpr 4603 × cxp 5652 dom cdm 5654 ↾ cres 5656 ∘ ccom 5658 Rel wrel 5659 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 +∞cpnf 11266 − cmin 11466 abscabs 15253 Metcmet 21301 ballcbl 21302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 |
| This theorem is referenced by: dvconstbi 44358 |
| Copyright terms: Public domain | W3C validator |