Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sblpnf Structured version   Visualization version   GIF version

Theorem sblpnf 44329
Description: The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 24407. (Contributed by Steve Rodriguez, 8-Nov-2015.)
Hypotheses
Ref Expression
sblpnf.s (𝜑𝑆 ∈ {ℝ, ℂ})
sblpnf.d 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
Assertion
Ref Expression
sblpnf ((𝜑𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)

Proof of Theorem sblpnf
StepHypRef Expression
1 sblpnf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 elpri 4649 . . 3 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
3 sblpnf.d . . . . 5 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
4 eqid 2737 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54remet 24811 . . . . . 6 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
6 xpeq12 5710 . . . . . . . . 9 ((𝑆 = ℝ ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ))
76anidms 566 . . . . . . . 8 (𝑆 = ℝ → (𝑆 × 𝑆) = (ℝ × ℝ))
87reseq2d 5997 . . . . . . 7 (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ)))
9 fveq2 6906 . . . . . . 7 (𝑆 = ℝ → (Met‘𝑆) = (Met‘ℝ))
108, 9eleq12d 2835 . . . . . 6 (𝑆 = ℝ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)))
115, 10mpbiri 258 . . . . 5 (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
123, 11eqeltrid 2845 . . . 4 (𝑆 = ℝ → 𝐷 ∈ (Met‘𝑆))
13 relco 6126 . . . . . . . . 9 Rel (abs ∘ − )
14 resdm 6044 . . . . . . . . 9 (Rel (abs ∘ − ) → ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − ))
1513, 14ax-mp 5 . . . . . . . 8 ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − )
16 absf 15376 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
17 ax-resscn 11212 . . . . . . . . . . . 12 ℝ ⊆ ℂ
18 fss 6752 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ)
1916, 17, 18mp2an 692 . . . . . . . . . . 11 abs:ℂ⟶ℂ
20 subf 11510 . . . . . . . . . . 11 − :(ℂ × ℂ)⟶ℂ
21 fco 6760 . . . . . . . . . . 11 ((abs:ℂ⟶ℂ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℂ)
2219, 20, 21mp2an 692 . . . . . . . . . 10 (abs ∘ − ):(ℂ × ℂ)⟶ℂ
2322fdmi 6747 . . . . . . . . 9 dom (abs ∘ − ) = (ℂ × ℂ)
2423reseq2i 5994 . . . . . . . 8 ((abs ∘ − ) ↾ dom (abs ∘ − )) = ((abs ∘ − ) ↾ (ℂ × ℂ))
2515, 24eqtr3i 2767 . . . . . . 7 (abs ∘ − ) = ((abs ∘ − ) ↾ (ℂ × ℂ))
26 cnmet 24792 . . . . . . 7 (abs ∘ − ) ∈ (Met‘ℂ)
2725, 26eqeltrri 2838 . . . . . 6 ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ)
28 xpeq12 5710 . . . . . . . . 9 ((𝑆 = ℂ ∧ 𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ))
2928anidms 566 . . . . . . . 8 (𝑆 = ℂ → (𝑆 × 𝑆) = (ℂ × ℂ))
3029reseq2d 5997 . . . . . . 7 (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ)))
31 fveq2 6906 . . . . . . 7 (𝑆 = ℂ → (Met‘𝑆) = (Met‘ℂ))
3230, 31eleq12d 2835 . . . . . 6 (𝑆 = ℂ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ)))
3327, 32mpbiri 258 . . . . 5 (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
343, 33eqeltrid 2845 . . . 4 (𝑆 = ℂ → 𝐷 ∈ (Met‘𝑆))
3512, 34jaoi 858 . . 3 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝐷 ∈ (Met‘𝑆))
361, 2, 353syl 18 . 2 (𝜑𝐷 ∈ (Met‘𝑆))
37 blpnf 24407 . 2 ((𝐷 ∈ (Met‘𝑆) ∧ 𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)
3836, 37sylan 580 1 ((𝜑𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wss 3951  {cpr 4628   × cxp 5683  dom cdm 5685  cres 5687  ccom 5689  Rel wrel 5690  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  +∞cpnf 11292  cmin 11492  abscabs 15273  Metcmet 21350  ballcbl 21351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359
This theorem is referenced by:  dvconstbi  44353
  Copyright terms: Public domain W3C validator