Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sblpnf Structured version   Visualization version   GIF version

Theorem sblpnf 40635
Description: The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 23001. (Contributed by Steve Rodriguez, 8-Nov-2015.)
Hypotheses
Ref Expression
sblpnf.s (𝜑𝑆 ∈ {ℝ, ℂ})
sblpnf.d 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
Assertion
Ref Expression
sblpnf ((𝜑𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)

Proof of Theorem sblpnf
StepHypRef Expression
1 sblpnf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 elpri 4583 . . 3 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
3 sblpnf.d . . . . 5 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
4 eqid 2821 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54remet 23392 . . . . . 6 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
6 xpeq12 5575 . . . . . . . . 9 ((𝑆 = ℝ ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ))
76anidms 569 . . . . . . . 8 (𝑆 = ℝ → (𝑆 × 𝑆) = (ℝ × ℝ))
87reseq2d 5848 . . . . . . 7 (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ)))
9 fveq2 6665 . . . . . . 7 (𝑆 = ℝ → (Met‘𝑆) = (Met‘ℝ))
108, 9eleq12d 2907 . . . . . 6 (𝑆 = ℝ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)))
115, 10mpbiri 260 . . . . 5 (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
123, 11eqeltrid 2917 . . . 4 (𝑆 = ℝ → 𝐷 ∈ (Met‘𝑆))
13 relco 6092 . . . . . . . . 9 Rel (abs ∘ − )
14 resdm 5892 . . . . . . . . 9 (Rel (abs ∘ − ) → ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − ))
1513, 14ax-mp 5 . . . . . . . 8 ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − )
16 absf 14691 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
17 ax-resscn 10588 . . . . . . . . . . . 12 ℝ ⊆ ℂ
18 fss 6522 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ)
1916, 17, 18mp2an 690 . . . . . . . . . . 11 abs:ℂ⟶ℂ
20 subf 10882 . . . . . . . . . . 11 − :(ℂ × ℂ)⟶ℂ
21 fco 6526 . . . . . . . . . . 11 ((abs:ℂ⟶ℂ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℂ)
2219, 20, 21mp2an 690 . . . . . . . . . 10 (abs ∘ − ):(ℂ × ℂ)⟶ℂ
2322fdmi 6519 . . . . . . . . 9 dom (abs ∘ − ) = (ℂ × ℂ)
2423reseq2i 5845 . . . . . . . 8 ((abs ∘ − ) ↾ dom (abs ∘ − )) = ((abs ∘ − ) ↾ (ℂ × ℂ))
2515, 24eqtr3i 2846 . . . . . . 7 (abs ∘ − ) = ((abs ∘ − ) ↾ (ℂ × ℂ))
26 cnmet 23374 . . . . . . 7 (abs ∘ − ) ∈ (Met‘ℂ)
2725, 26eqeltrri 2910 . . . . . 6 ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ)
28 xpeq12 5575 . . . . . . . . 9 ((𝑆 = ℂ ∧ 𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ))
2928anidms 569 . . . . . . . 8 (𝑆 = ℂ → (𝑆 × 𝑆) = (ℂ × ℂ))
3029reseq2d 5848 . . . . . . 7 (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ)))
31 fveq2 6665 . . . . . . 7 (𝑆 = ℂ → (Met‘𝑆) = (Met‘ℂ))
3230, 31eleq12d 2907 . . . . . 6 (𝑆 = ℂ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ)))
3327, 32mpbiri 260 . . . . 5 (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
343, 33eqeltrid 2917 . . . 4 (𝑆 = ℂ → 𝐷 ∈ (Met‘𝑆))
3512, 34jaoi 853 . . 3 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝐷 ∈ (Met‘𝑆))
361, 2, 353syl 18 . 2 (𝜑𝐷 ∈ (Met‘𝑆))
37 blpnf 23001 . 2 ((𝐷 ∈ (Met‘𝑆) ∧ 𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)
3836, 37sylan 582 1 ((𝜑𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wss 3936  {cpr 4563   × cxp 5548  dom cdm 5550  cres 5552  ccom 5554  Rel wrel 5555  wf 6346  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  +∞cpnf 10666  cmin 10864  abscabs 14587  Metcmet 20525  ballcbl 20526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534
This theorem is referenced by:  dvconstbi  40659
  Copyright terms: Public domain W3C validator