Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sblpnf Structured version   Visualization version   GIF version

Theorem sblpnf 44299
Description: The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 24285. (Contributed by Steve Rodriguez, 8-Nov-2015.)
Hypotheses
Ref Expression
sblpnf.s (𝜑𝑆 ∈ {ℝ, ℂ})
sblpnf.d 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
Assertion
Ref Expression
sblpnf ((𝜑𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)

Proof of Theorem sblpnf
StepHypRef Expression
1 sblpnf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 elpri 4613 . . 3 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
3 sblpnf.d . . . . 5 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
4 eqid 2729 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54remet 24678 . . . . . 6 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
6 xpeq12 5663 . . . . . . . . 9 ((𝑆 = ℝ ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ))
76anidms 566 . . . . . . . 8 (𝑆 = ℝ → (𝑆 × 𝑆) = (ℝ × ℝ))
87reseq2d 5950 . . . . . . 7 (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ)))
9 fveq2 6858 . . . . . . 7 (𝑆 = ℝ → (Met‘𝑆) = (Met‘ℝ))
108, 9eleq12d 2822 . . . . . 6 (𝑆 = ℝ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)))
115, 10mpbiri 258 . . . . 5 (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
123, 11eqeltrid 2832 . . . 4 (𝑆 = ℝ → 𝐷 ∈ (Met‘𝑆))
13 relco 6079 . . . . . . . . 9 Rel (abs ∘ − )
14 resdm 5997 . . . . . . . . 9 (Rel (abs ∘ − ) → ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − ))
1513, 14ax-mp 5 . . . . . . . 8 ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − )
16 absf 15304 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
17 ax-resscn 11125 . . . . . . . . . . . 12 ℝ ⊆ ℂ
18 fss 6704 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ)
1916, 17, 18mp2an 692 . . . . . . . . . . 11 abs:ℂ⟶ℂ
20 subf 11423 . . . . . . . . . . 11 − :(ℂ × ℂ)⟶ℂ
21 fco 6712 . . . . . . . . . . 11 ((abs:ℂ⟶ℂ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℂ)
2219, 20, 21mp2an 692 . . . . . . . . . 10 (abs ∘ − ):(ℂ × ℂ)⟶ℂ
2322fdmi 6699 . . . . . . . . 9 dom (abs ∘ − ) = (ℂ × ℂ)
2423reseq2i 5947 . . . . . . . 8 ((abs ∘ − ) ↾ dom (abs ∘ − )) = ((abs ∘ − ) ↾ (ℂ × ℂ))
2515, 24eqtr3i 2754 . . . . . . 7 (abs ∘ − ) = ((abs ∘ − ) ↾ (ℂ × ℂ))
26 cnmet 24659 . . . . . . 7 (abs ∘ − ) ∈ (Met‘ℂ)
2725, 26eqeltrri 2825 . . . . . 6 ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ)
28 xpeq12 5663 . . . . . . . . 9 ((𝑆 = ℂ ∧ 𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ))
2928anidms 566 . . . . . . . 8 (𝑆 = ℂ → (𝑆 × 𝑆) = (ℂ × ℂ))
3029reseq2d 5950 . . . . . . 7 (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ)))
31 fveq2 6858 . . . . . . 7 (𝑆 = ℂ → (Met‘𝑆) = (Met‘ℂ))
3230, 31eleq12d 2822 . . . . . 6 (𝑆 = ℂ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ)))
3327, 32mpbiri 258 . . . . 5 (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
343, 33eqeltrid 2832 . . . 4 (𝑆 = ℂ → 𝐷 ∈ (Met‘𝑆))
3512, 34jaoi 857 . . 3 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝐷 ∈ (Met‘𝑆))
361, 2, 353syl 18 . 2 (𝜑𝐷 ∈ (Met‘𝑆))
37 blpnf 24285 . 2 ((𝐷 ∈ (Met‘𝑆) ∧ 𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)
3836, 37sylan 580 1 ((𝜑𝑃𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wss 3914  {cpr 4591   × cxp 5636  dom cdm 5638  cres 5640  ccom 5642  Rel wrel 5643  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  +∞cpnf 11205  cmin 11405  abscabs 15200  Metcmet 21250  ballcbl 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259
This theorem is referenced by:  dvconstbi  44323
  Copyright terms: Public domain W3C validator