| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sblpnf | Structured version Visualization version GIF version | ||
| Description: The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 24285. (Contributed by Steve Rodriguez, 8-Nov-2015.) |
| Ref | Expression |
|---|---|
| sblpnf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| sblpnf.d | ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| sblpnf | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sblpnf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | elpri 4613 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 3 | sblpnf.d | . . . . 5 ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 5 | 4 | remet 24678 | . . . . . 6 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) |
| 6 | xpeq12 5663 | . . . . . . . . 9 ⊢ ((𝑆 = ℝ ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ)) | |
| 7 | 6 | anidms 566 | . . . . . . . 8 ⊢ (𝑆 = ℝ → (𝑆 × 𝑆) = (ℝ × ℝ)) |
| 8 | 7 | reseq2d 5950 | . . . . . . 7 ⊢ (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ))) |
| 9 | fveq2 6858 | . . . . . . 7 ⊢ (𝑆 = ℝ → (Met‘𝑆) = (Met‘ℝ)) | |
| 10 | 8, 9 | eleq12d 2822 | . . . . . 6 ⊢ (𝑆 = ℝ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ))) |
| 11 | 5, 10 | mpbiri 258 | . . . . 5 ⊢ (𝑆 = ℝ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
| 12 | 3, 11 | eqeltrid 2832 | . . . 4 ⊢ (𝑆 = ℝ → 𝐷 ∈ (Met‘𝑆)) |
| 13 | relco 6079 | . . . . . . . . 9 ⊢ Rel (abs ∘ − ) | |
| 14 | resdm 5997 | . . . . . . . . 9 ⊢ (Rel (abs ∘ − ) → ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − )) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ dom (abs ∘ − )) = (abs ∘ − ) |
| 16 | absf 15304 | . . . . . . . . . . . 12 ⊢ abs:ℂ⟶ℝ | |
| 17 | ax-resscn 11125 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
| 18 | fss 6704 | . . . . . . . . . . . 12 ⊢ ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ) | |
| 19 | 16, 17, 18 | mp2an 692 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℂ |
| 20 | subf 11423 | . . . . . . . . . . 11 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 21 | fco 6712 | . . . . . . . . . . 11 ⊢ ((abs:ℂ⟶ℂ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℂ) | |
| 22 | 19, 20, 21 | mp2an 692 | . . . . . . . . . 10 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℂ |
| 23 | 22 | fdmi 6699 | . . . . . . . . 9 ⊢ dom (abs ∘ − ) = (ℂ × ℂ) |
| 24 | 23 | reseq2i 5947 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ dom (abs ∘ − )) = ((abs ∘ − ) ↾ (ℂ × ℂ)) |
| 25 | 15, 24 | eqtr3i 2754 | . . . . . . 7 ⊢ (abs ∘ − ) = ((abs ∘ − ) ↾ (ℂ × ℂ)) |
| 26 | cnmet 24659 | . . . . . . 7 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 27 | 25, 26 | eqeltrri 2825 | . . . . . 6 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ) |
| 28 | xpeq12 5663 | . . . . . . . . 9 ⊢ ((𝑆 = ℂ ∧ 𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ)) | |
| 29 | 28 | anidms 566 | . . . . . . . 8 ⊢ (𝑆 = ℂ → (𝑆 × 𝑆) = (ℂ × ℂ)) |
| 30 | 29 | reseq2d 5950 | . . . . . . 7 ⊢ (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ))) |
| 31 | fveq2 6858 | . . . . . . 7 ⊢ (𝑆 = ℂ → (Met‘𝑆) = (Met‘ℂ)) | |
| 32 | 30, 31 | eleq12d 2822 | . . . . . 6 ⊢ (𝑆 = ℂ → (((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ↔ ((abs ∘ − ) ↾ (ℂ × ℂ)) ∈ (Met‘ℂ))) |
| 33 | 27, 32 | mpbiri 258 | . . . . 5 ⊢ (𝑆 = ℂ → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
| 34 | 3, 33 | eqeltrid 2832 | . . . 4 ⊢ (𝑆 = ℂ → 𝐷 ∈ (Met‘𝑆)) |
| 35 | 12, 34 | jaoi 857 | . . 3 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝐷 ∈ (Met‘𝑆)) |
| 36 | 1, 2, 35 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑆)) |
| 37 | blpnf 24285 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑆) ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) | |
| 38 | 36, 37 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 {cpr 4591 × cxp 5636 dom cdm 5638 ↾ cres 5640 ∘ ccom 5642 Rel wrel 5643 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 +∞cpnf 11205 − cmin 11405 abscabs 15200 Metcmet 21250 ballcbl 21251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 |
| This theorem is referenced by: dvconstbi 44323 |
| Copyright terms: Public domain | W3C validator |