![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txtopon | Structured version Visualization version GIF version |
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
txtopon | β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γt π) β (TopOnβ(π Γ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22635 | . . 3 β’ (π β (TopOnβπ) β π β Top) | |
2 | topontop 22635 | . . 3 β’ (π β (TopOnβπ) β π β Top) | |
3 | txtop 23293 | . . 3 β’ ((π β Top β§ π β Top) β (π Γt π) β Top) | |
4 | 1, 2, 3 | syl2an 596 | . 2 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γt π) β Top) |
5 | eqid 2732 | . . . . 5 β’ ran (π’ β π , π£ β π β¦ (π’ Γ π£)) = ran (π’ β π , π£ β π β¦ (π’ Γ π£)) | |
6 | eqid 2732 | . . . . 5 β’ βͺ π = βͺ π | |
7 | eqid 2732 | . . . . 5 β’ βͺ π = βͺ π | |
8 | 5, 6, 7 | txuni2 23289 | . . . 4 β’ (βͺ π Γ βͺ π) = βͺ ran (π’ β π , π£ β π β¦ (π’ Γ π£)) |
9 | toponuni 22636 | . . . . 5 β’ (π β (TopOnβπ) β π = βͺ π ) | |
10 | toponuni 22636 | . . . . 5 β’ (π β (TopOnβπ) β π = βͺ π) | |
11 | xpeq12 5701 | . . . . 5 β’ ((π = βͺ π β§ π = βͺ π) β (π Γ π) = (βͺ π Γ βͺ π)) | |
12 | 9, 10, 11 | syl2an 596 | . . . 4 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γ π) = (βͺ π Γ βͺ π)) |
13 | 5 | txbasex 23290 | . . . . 5 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β ran (π’ β π , π£ β π β¦ (π’ Γ π£)) β V) |
14 | unitg 22690 | . . . . 5 β’ (ran (π’ β π , π£ β π β¦ (π’ Γ π£)) β V β βͺ (topGenβran (π’ β π , π£ β π β¦ (π’ Γ π£))) = βͺ ran (π’ β π , π£ β π β¦ (π’ Γ π£))) | |
15 | 13, 14 | syl 17 | . . . 4 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β βͺ (topGenβran (π’ β π , π£ β π β¦ (π’ Γ π£))) = βͺ ran (π’ β π , π£ β π β¦ (π’ Γ π£))) |
16 | 8, 12, 15 | 3eqtr4a 2798 | . . 3 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γ π) = βͺ (topGenβran (π’ β π , π£ β π β¦ (π’ Γ π£)))) |
17 | 5 | txval 23288 | . . . 4 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γt π) = (topGenβran (π’ β π , π£ β π β¦ (π’ Γ π£)))) |
18 | 17 | unieqd 4922 | . . 3 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β βͺ (π Γt π) = βͺ (topGenβran (π’ β π , π£ β π β¦ (π’ Γ π£)))) |
19 | 16, 18 | eqtr4d 2775 | . 2 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γ π) = βͺ (π Γt π)) |
20 | istopon 22634 | . 2 β’ ((π Γt π) β (TopOnβ(π Γ π)) β ((π Γt π) β Top β§ (π Γ π) = βͺ (π Γt π))) | |
21 | 4, 19, 20 | sylanbrc 583 | 1 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γt π) β (TopOnβ(π Γ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 βͺ cuni 4908 Γ cxp 5674 ran crn 5677 βcfv 6543 (class class class)co 7411 β cmpo 7413 topGenctg 17387 Topctop 22615 TopOnctopon 22632 Γt ctx 23284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-topgen 17393 df-top 22616 df-topon 22633 df-bases 22669 df-tx 23286 |
This theorem is referenced by: txuni 23316 txcls 23328 tx1cn 23333 tx2cn 23334 txcnp 23344 txcnmpt 23348 txindis 23358 txdis1cn 23359 txlm 23372 lmcn2 23373 xkococn 23384 cnmpt12 23391 cnmpt2c 23394 cnmpt21 23395 cnmpt2t 23397 cnmpt22 23398 cnmpt22f 23399 cnmpt2res 23401 cnmptcom 23402 cnmpt2k 23412 ptunhmeo 23532 xpstopnlem1 23533 xkocnv 23538 xkohmeo 23539 txflf 23730 flfcnp2 23731 cnmpt2plusg 23812 tmdcn2 23813 indistgp 23824 clssubg 23833 qustgplem 23845 prdstmdd 23848 tsmsadd 23871 cnmpt2vsca 23919 txmetcn 24277 cnmpt2ds 24579 fsum2cn 24609 cnmpopc 24668 htpyco2 24719 phtpyco2 24730 cnmpt2ip 24989 limccnp2 25633 dvcnp2 25661 dvaddbr 25679 dvmulbr 25680 dvcobr 25687 lhop1lem 25754 taylthlem2 26110 cxpcn3 26480 tpr2tp 33170 txsconnlem 34517 txsconn 34518 cvmlift2lem11 34590 cvmlift2lem12 34591 gg-dvcnp2 35460 gg-dvmulbr 35461 gg-dvcobr 35462 |
Copyright terms: Public domain | W3C validator |