| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txtopon | Structured version Visualization version GIF version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txtopon | ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22798 | . . 3 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top) | |
| 2 | topontop 22798 | . . 3 ⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top) | |
| 3 | txtop 23454 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ Top) |
| 5 | eqid 2729 | . . . . 5 ⊢ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) | |
| 6 | eqid 2729 | . . . . 5 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 7 | eqid 2729 | . . . . 5 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 8 | 5, 6, 7 | txuni2 23450 | . . . 4 ⊢ (∪ 𝑅 × ∪ 𝑆) = ∪ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) |
| 9 | toponuni 22799 | . . . . 5 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑅) | |
| 10 | toponuni 22799 | . . . . 5 ⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝑆) | |
| 11 | xpeq12 5644 | . . . . 5 ⊢ ((𝑋 = ∪ 𝑅 ∧ 𝑌 = ∪ 𝑆) → (𝑋 × 𝑌) = (∪ 𝑅 × ∪ 𝑆)) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (∪ 𝑅 × ∪ 𝑆)) |
| 13 | 5 | txbasex 23451 | . . . . 5 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V) |
| 14 | unitg 22852 | . . . . 5 ⊢ (ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V → ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = ∪ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = ∪ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
| 16 | 8, 12, 15 | 3eqtr4a 2790 | . . 3 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 17 | 5 | txval 23449 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 18 | 17 | unieqd 4871 | . . 3 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∪ (𝑅 ×t 𝑆) = ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 19 | 16, 18 | eqtr4d 2767 | . 2 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| 20 | istopon 22797 | . 2 ⊢ ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆))) | |
| 21 | 4, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cuni 4858 × cxp 5617 ran crn 5620 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 topGenctg 17341 Topctop 22778 TopOnctopon 22795 ×t ctx 23445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-topgen 17347 df-top 22779 df-topon 22796 df-bases 22831 df-tx 23447 |
| This theorem is referenced by: txuni 23477 txcls 23489 tx1cn 23494 tx2cn 23495 txcnp 23505 txcnmpt 23509 txindis 23519 txdis1cn 23520 txlm 23533 lmcn2 23534 xkococn 23545 cnmpt12 23552 cnmpt2c 23555 cnmpt21 23556 cnmpt2t 23558 cnmpt22 23559 cnmpt22f 23560 cnmpt2res 23562 cnmptcom 23563 cnmpt2k 23573 ptunhmeo 23693 xpstopnlem1 23694 xkocnv 23699 xkohmeo 23700 txflf 23891 flfcnp2 23892 cnmpt2plusg 23973 tmdcn2 23974 indistgp 23985 clssubg 23994 qustgplem 24006 prdstmdd 24009 tsmsadd 24032 cnmpt2vsca 24080 txmetcn 24434 cnmpt2ds 24730 fsum2cn 24760 cnmpopc 24820 htpyco2 24876 phtpyco2 24887 cnmpt2ip 25146 limccnp2 25791 dvcnp2 25819 dvcnp2OLD 25820 dvaddbr 25838 dvmulbr 25839 dvmulbrOLD 25840 dvcobr 25847 dvcobrOLD 25848 lhop1lem 25916 taylthlem2 26280 taylthlem2OLD 26281 cxpcn3 26656 tpr2tp 33887 txsconnlem 35233 txsconn 35234 cvmlift2lem11 35306 cvmlift2lem12 35307 |
| Copyright terms: Public domain | W3C validator |