MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtopon Structured version   Visualization version   GIF version

Theorem txtopon 22650
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txtopon ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))

Proof of Theorem txtopon
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 21970 . . 3 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
2 topontop 21970 . . 3 (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top)
3 txtop 22628 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 595 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ Top)
5 eqid 2738 . . . . 5 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
6 eqid 2738 . . . . 5 𝑅 = 𝑅
7 eqid 2738 . . . . 5 𝑆 = 𝑆
85, 6, 7txuni2 22624 . . . 4 ( 𝑅 × 𝑆) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
9 toponuni 21971 . . . . 5 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
10 toponuni 21971 . . . . 5 (𝑆 ∈ (TopOn‘𝑌) → 𝑌 = 𝑆)
11 xpeq12 5605 . . . . 5 ((𝑋 = 𝑅𝑌 = 𝑆) → (𝑋 × 𝑌) = ( 𝑅 × 𝑆))
129, 10, 11syl2an 595 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = ( 𝑅 × 𝑆))
135txbasex 22625 . . . . 5 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
14 unitg 22025 . . . . 5 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
1513, 14syl 17 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
168, 12, 153eqtr4a 2805 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
175txval 22623 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
1817unieqd 4850 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
1916, 18eqtr4d 2781 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
20 istopon 21969 . 2 ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑋 × 𝑌) = (𝑅 ×t 𝑆)))
214, 19, 20sylanbrc 582 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   cuni 4836   × cxp 5578  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  topGenctg 17065  Topctop 21950  TopOnctopon 21967   ×t ctx 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-tx 22621
This theorem is referenced by:  txuni  22651  txcls  22663  tx1cn  22668  tx2cn  22669  txcnp  22679  txcnmpt  22683  txindis  22693  txdis1cn  22694  txlm  22707  lmcn2  22708  xkococn  22719  cnmpt12  22726  cnmpt2c  22729  cnmpt21  22730  cnmpt2t  22732  cnmpt22  22733  cnmpt22f  22734  cnmpt2res  22736  cnmptcom  22737  cnmpt2k  22747  ptunhmeo  22867  xpstopnlem1  22868  xkocnv  22873  xkohmeo  22874  txflf  23065  flfcnp2  23066  cnmpt2plusg  23147  tmdcn2  23148  indistgp  23159  clssubg  23168  qustgplem  23180  prdstmdd  23183  tsmsadd  23206  cnmpt2vsca  23254  txmetcn  23610  cnmpt2ds  23912  fsum2cn  23940  cnmpopc  23997  htpyco2  24048  phtpyco2  24059  cnmpt2ip  24317  limccnp2  24961  dvcnp2  24989  dvaddbr  25007  dvmulbr  25008  dvcobr  25015  lhop1lem  25082  taylthlem2  25438  cxpcn3  25806  tpr2tp  31756  txsconnlem  33102  txsconn  33103  cvmlift2lem11  33175  cvmlift2lem12  33176
  Copyright terms: Public domain W3C validator