MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtopon Structured version   Visualization version   GIF version

Theorem txtopon 21616
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txtopon ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))

Proof of Theorem txtopon
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 20939 . . 3 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
2 topontop 20939 . . 3 (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top)
3 txtop 21594 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 577 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ Top)
5 eqid 2771 . . . . 5 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
6 eqid 2771 . . . . 5 𝑅 = 𝑅
7 eqid 2771 . . . . 5 𝑆 = 𝑆
85, 6, 7txuni2 21590 . . . 4 ( 𝑅 × 𝑆) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
9 toponuni 20940 . . . . 5 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
10 toponuni 20940 . . . . 5 (𝑆 ∈ (TopOn‘𝑌) → 𝑌 = 𝑆)
11 xpeq12 5275 . . . . 5 ((𝑋 = 𝑅𝑌 = 𝑆) → (𝑋 × 𝑌) = ( 𝑅 × 𝑆))
129, 10, 11syl2an 577 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = ( 𝑅 × 𝑆))
135txbasex 21591 . . . . 5 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
14 unitg 20993 . . . . 5 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
1513, 14syl 17 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
168, 12, 153eqtr4a 2831 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
175txval 21589 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
1817unieqd 4585 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
1916, 18eqtr4d 2808 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
20 istopon 20938 . 2 ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑋 × 𝑌) = (𝑅 ×t 𝑆)))
214, 19, 20sylanbrc 566 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351   cuni 4575   × cxp 5248  ran crn 5251  cfv 6032  (class class class)co 6794  cmpt2 6796  topGenctg 16307  Topctop 20919  TopOnctopon 20936   ×t ctx 21585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-1st 7316  df-2nd 7317  df-topgen 16313  df-top 20920  df-topon 20937  df-bases 20972  df-tx 21587
This theorem is referenced by:  txuni  21617  txcls  21629  tx1cn  21634  tx2cn  21635  txcnp  21645  txcnmpt  21649  txindis  21659  txdis1cn  21660  txlm  21673  lmcn2  21674  xkococn  21685  cnmpt12  21692  cnmpt2c  21695  cnmpt21  21696  cnmpt2t  21698  cnmpt22  21699  cnmpt22f  21700  cnmpt2res  21702  cnmptcom  21703  cnmpt2k  21713  ptunhmeo  21833  xpstopnlem1  21834  xkocnv  21839  xkohmeo  21840  txflf  22031  flfcnp2  22032  cnmpt2plusg  22113  tmdcn2  22114  indistgp  22125  clssubg  22133  qustgplem  22145  prdstmdd  22148  tsmsadd  22171  cnmpt2vsca  22219  txmetcn  22574  cnmpt2ds  22867  fsum2cn  22895  cnmpt2pc  22948  htpyco2  22999  phtpyco2  23010  cnmpt2ip  23267  limccnp2  23877  dvcnp2  23904  dvaddbr  23922  dvmulbr  23923  dvcobr  23930  lhop1lem  23997  taylthlem2  24349  cxpcn3  24711  tpr2tp  30291  txsconnlem  31561  txsconn  31562  cvmlift2lem11  31634  cvmlift2lem12  31635
  Copyright terms: Public domain W3C validator