![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txtopon | Structured version Visualization version GIF version |
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
txtopon | ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22940 | . . 3 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top) | |
2 | topontop 22940 | . . 3 ⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top) | |
3 | txtop 23598 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ Top) |
5 | eqid 2740 | . . . . 5 ⊢ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) | |
6 | eqid 2740 | . . . . 5 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
7 | eqid 2740 | . . . . 5 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
8 | 5, 6, 7 | txuni2 23594 | . . . 4 ⊢ (∪ 𝑅 × ∪ 𝑆) = ∪ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) |
9 | toponuni 22941 | . . . . 5 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑅) | |
10 | toponuni 22941 | . . . . 5 ⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝑆) | |
11 | xpeq12 5725 | . . . . 5 ⊢ ((𝑋 = ∪ 𝑅 ∧ 𝑌 = ∪ 𝑆) → (𝑋 × 𝑌) = (∪ 𝑅 × ∪ 𝑆)) | |
12 | 9, 10, 11 | syl2an 595 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (∪ 𝑅 × ∪ 𝑆)) |
13 | 5 | txbasex 23595 | . . . . 5 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V) |
14 | unitg 22995 | . . . . 5 ⊢ (ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V → ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = ∪ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = ∪ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
16 | 8, 12, 15 | 3eqtr4a 2806 | . . 3 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
17 | 5 | txval 23593 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
18 | 17 | unieqd 4944 | . . 3 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∪ (𝑅 ×t 𝑆) = ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
19 | 16, 18 | eqtr4d 2783 | . 2 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
20 | istopon 22939 | . 2 ⊢ ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆))) | |
21 | 4, 19, 20 | sylanbrc 582 | 1 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cuni 4931 × cxp 5698 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 topGenctg 17497 Topctop 22920 TopOnctopon 22937 ×t ctx 23589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-topgen 17503 df-top 22921 df-topon 22938 df-bases 22974 df-tx 23591 |
This theorem is referenced by: txuni 23621 txcls 23633 tx1cn 23638 tx2cn 23639 txcnp 23649 txcnmpt 23653 txindis 23663 txdis1cn 23664 txlm 23677 lmcn2 23678 xkococn 23689 cnmpt12 23696 cnmpt2c 23699 cnmpt21 23700 cnmpt2t 23702 cnmpt22 23703 cnmpt22f 23704 cnmpt2res 23706 cnmptcom 23707 cnmpt2k 23717 ptunhmeo 23837 xpstopnlem1 23838 xkocnv 23843 xkohmeo 23844 txflf 24035 flfcnp2 24036 cnmpt2plusg 24117 tmdcn2 24118 indistgp 24129 clssubg 24138 qustgplem 24150 prdstmdd 24153 tsmsadd 24176 cnmpt2vsca 24224 txmetcn 24582 cnmpt2ds 24884 fsum2cn 24914 cnmpopc 24974 htpyco2 25030 phtpyco2 25041 cnmpt2ip 25301 limccnp2 25947 dvcnp2 25975 dvcnp2OLD 25976 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 dvcobr 26003 dvcobrOLD 26004 lhop1lem 26072 taylthlem2 26434 taylthlem2OLD 26435 cxpcn3 26809 tpr2tp 33850 txsconnlem 35208 txsconn 35209 cvmlift2lem11 35281 cvmlift2lem12 35282 |
Copyright terms: Public domain | W3C validator |