![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txtopon | Structured version Visualization version GIF version |
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
txtopon | β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γt π) β (TopOnβ(π Γ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22415 | . . 3 β’ (π β (TopOnβπ) β π β Top) | |
2 | topontop 22415 | . . 3 β’ (π β (TopOnβπ) β π β Top) | |
3 | txtop 23073 | . . 3 β’ ((π β Top β§ π β Top) β (π Γt π) β Top) | |
4 | 1, 2, 3 | syl2an 597 | . 2 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γt π) β Top) |
5 | eqid 2733 | . . . . 5 β’ ran (π’ β π , π£ β π β¦ (π’ Γ π£)) = ran (π’ β π , π£ β π β¦ (π’ Γ π£)) | |
6 | eqid 2733 | . . . . 5 β’ βͺ π = βͺ π | |
7 | eqid 2733 | . . . . 5 β’ βͺ π = βͺ π | |
8 | 5, 6, 7 | txuni2 23069 | . . . 4 β’ (βͺ π Γ βͺ π) = βͺ ran (π’ β π , π£ β π β¦ (π’ Γ π£)) |
9 | toponuni 22416 | . . . . 5 β’ (π β (TopOnβπ) β π = βͺ π ) | |
10 | toponuni 22416 | . . . . 5 β’ (π β (TopOnβπ) β π = βͺ π) | |
11 | xpeq12 5702 | . . . . 5 β’ ((π = βͺ π β§ π = βͺ π) β (π Γ π) = (βͺ π Γ βͺ π)) | |
12 | 9, 10, 11 | syl2an 597 | . . . 4 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γ π) = (βͺ π Γ βͺ π)) |
13 | 5 | txbasex 23070 | . . . . 5 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β ran (π’ β π , π£ β π β¦ (π’ Γ π£)) β V) |
14 | unitg 22470 | . . . . 5 β’ (ran (π’ β π , π£ β π β¦ (π’ Γ π£)) β V β βͺ (topGenβran (π’ β π , π£ β π β¦ (π’ Γ π£))) = βͺ ran (π’ β π , π£ β π β¦ (π’ Γ π£))) | |
15 | 13, 14 | syl 17 | . . . 4 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β βͺ (topGenβran (π’ β π , π£ β π β¦ (π’ Γ π£))) = βͺ ran (π’ β π , π£ β π β¦ (π’ Γ π£))) |
16 | 8, 12, 15 | 3eqtr4a 2799 | . . 3 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γ π) = βͺ (topGenβran (π’ β π , π£ β π β¦ (π’ Γ π£)))) |
17 | 5 | txval 23068 | . . . 4 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γt π) = (topGenβran (π’ β π , π£ β π β¦ (π’ Γ π£)))) |
18 | 17 | unieqd 4923 | . . 3 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β βͺ (π Γt π) = βͺ (topGenβran (π’ β π , π£ β π β¦ (π’ Γ π£)))) |
19 | 16, 18 | eqtr4d 2776 | . 2 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γ π) = βͺ (π Γt π)) |
20 | istopon 22414 | . 2 β’ ((π Γt π) β (TopOnβ(π Γ π)) β ((π Γt π) β Top β§ (π Γ π) = βͺ (π Γt π))) | |
21 | 4, 19, 20 | sylanbrc 584 | 1 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γt π) β (TopOnβ(π Γ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 βͺ cuni 4909 Γ cxp 5675 ran crn 5678 βcfv 6544 (class class class)co 7409 β cmpo 7411 topGenctg 17383 Topctop 22395 TopOnctopon 22412 Γt ctx 23064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-topgen 17389 df-top 22396 df-topon 22413 df-bases 22449 df-tx 23066 |
This theorem is referenced by: txuni 23096 txcls 23108 tx1cn 23113 tx2cn 23114 txcnp 23124 txcnmpt 23128 txindis 23138 txdis1cn 23139 txlm 23152 lmcn2 23153 xkococn 23164 cnmpt12 23171 cnmpt2c 23174 cnmpt21 23175 cnmpt2t 23177 cnmpt22 23178 cnmpt22f 23179 cnmpt2res 23181 cnmptcom 23182 cnmpt2k 23192 ptunhmeo 23312 xpstopnlem1 23313 xkocnv 23318 xkohmeo 23319 txflf 23510 flfcnp2 23511 cnmpt2plusg 23592 tmdcn2 23593 indistgp 23604 clssubg 23613 qustgplem 23625 prdstmdd 23628 tsmsadd 23651 cnmpt2vsca 23699 txmetcn 24057 cnmpt2ds 24359 fsum2cn 24387 cnmpopc 24444 htpyco2 24495 phtpyco2 24506 cnmpt2ip 24765 limccnp2 25409 dvcnp2 25437 dvaddbr 25455 dvmulbr 25456 dvcobr 25463 lhop1lem 25530 taylthlem2 25886 cxpcn3 26256 tpr2tp 32884 txsconnlem 34231 txsconn 34232 cvmlift2lem11 34304 cvmlift2lem12 34305 gg-dvcnp2 35174 gg-dvmulbr 35175 gg-dvcobr 35176 |
Copyright terms: Public domain | W3C validator |