| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txtopon | Structured version Visualization version GIF version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txtopon | ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22828 | . . 3 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top) | |
| 2 | topontop 22828 | . . 3 ⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top) | |
| 3 | txtop 23484 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ Top) |
| 5 | eqid 2731 | . . . . 5 ⊢ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) | |
| 6 | eqid 2731 | . . . . 5 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 7 | eqid 2731 | . . . . 5 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 8 | 5, 6, 7 | txuni2 23480 | . . . 4 ⊢ (∪ 𝑅 × ∪ 𝑆) = ∪ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) |
| 9 | toponuni 22829 | . . . . 5 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑅) | |
| 10 | toponuni 22829 | . . . . 5 ⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝑆) | |
| 11 | xpeq12 5639 | . . . . 5 ⊢ ((𝑋 = ∪ 𝑅 ∧ 𝑌 = ∪ 𝑆) → (𝑋 × 𝑌) = (∪ 𝑅 × ∪ 𝑆)) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (∪ 𝑅 × ∪ 𝑆)) |
| 13 | 5 | txbasex 23481 | . . . . 5 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V) |
| 14 | unitg 22882 | . . . . 5 ⊢ (ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V → ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = ∪ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = ∪ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
| 16 | 8, 12, 15 | 3eqtr4a 2792 | . . 3 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 17 | 5 | txval 23479 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 18 | 17 | unieqd 4869 | . . 3 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∪ (𝑅 ×t 𝑆) = ∪ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 19 | 16, 18 | eqtr4d 2769 | . 2 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| 20 | istopon 22827 | . 2 ⊢ ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆))) | |
| 21 | 4, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cuni 4856 × cxp 5612 ran crn 5615 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 topGenctg 17341 Topctop 22808 TopOnctopon 22825 ×t ctx 23475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-topgen 17347 df-top 22809 df-topon 22826 df-bases 22861 df-tx 23477 |
| This theorem is referenced by: txuni 23507 txcls 23519 tx1cn 23524 tx2cn 23525 txcnp 23535 txcnmpt 23539 txindis 23549 txdis1cn 23550 txlm 23563 lmcn2 23564 xkococn 23575 cnmpt12 23582 cnmpt2c 23585 cnmpt21 23586 cnmpt2t 23588 cnmpt22 23589 cnmpt22f 23590 cnmpt2res 23592 cnmptcom 23593 cnmpt2k 23603 ptunhmeo 23723 xpstopnlem1 23724 xkocnv 23729 xkohmeo 23730 txflf 23921 flfcnp2 23922 cnmpt2plusg 24003 tmdcn2 24004 indistgp 24015 clssubg 24024 qustgplem 24036 prdstmdd 24039 tsmsadd 24062 cnmpt2vsca 24110 txmetcn 24463 cnmpt2ds 24759 fsum2cn 24789 cnmpopc 24849 htpyco2 24905 phtpyco2 24916 cnmpt2ip 25175 limccnp2 25820 dvcnp2 25848 dvcnp2OLD 25849 dvaddbr 25867 dvmulbr 25868 dvmulbrOLD 25869 dvcobr 25876 dvcobrOLD 25877 lhop1lem 25945 taylthlem2 26309 taylthlem2OLD 26310 cxpcn3 26685 tpr2tp 33917 txsconnlem 35284 txsconn 35285 cvmlift2lem11 35357 cvmlift2lem12 35358 |
| Copyright terms: Public domain | W3C validator |