MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtopon Structured version   Visualization version   GIF version

Theorem txtopon 23527
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txtopon ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))

Proof of Theorem txtopon
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22849 . . 3 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
2 topontop 22849 . . 3 (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top)
3 txtop 23505 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 596 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ Top)
5 eqid 2735 . . . . 5 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
6 eqid 2735 . . . . 5 𝑅 = 𝑅
7 eqid 2735 . . . . 5 𝑆 = 𝑆
85, 6, 7txuni2 23501 . . . 4 ( 𝑅 × 𝑆) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
9 toponuni 22850 . . . . 5 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
10 toponuni 22850 . . . . 5 (𝑆 ∈ (TopOn‘𝑌) → 𝑌 = 𝑆)
11 xpeq12 5679 . . . . 5 ((𝑋 = 𝑅𝑌 = 𝑆) → (𝑋 × 𝑌) = ( 𝑅 × 𝑆))
129, 10, 11syl2an 596 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = ( 𝑅 × 𝑆))
135txbasex 23502 . . . . 5 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
14 unitg 22903 . . . . 5 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
1513, 14syl 17 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
168, 12, 153eqtr4a 2796 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
175txval 23500 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
1817unieqd 4896 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
1916, 18eqtr4d 2773 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
20 istopon 22848 . 2 ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑋 × 𝑌) = (𝑅 ×t 𝑆)))
214, 19, 20sylanbrc 583 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459   cuni 4883   × cxp 5652  ran crn 5655  cfv 6530  (class class class)co 7403  cmpo 7405  topGenctg 17449  Topctop 22829  TopOnctopon 22846   ×t ctx 23496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-topgen 17455  df-top 22830  df-topon 22847  df-bases 22882  df-tx 23498
This theorem is referenced by:  txuni  23528  txcls  23540  tx1cn  23545  tx2cn  23546  txcnp  23556  txcnmpt  23560  txindis  23570  txdis1cn  23571  txlm  23584  lmcn2  23585  xkococn  23596  cnmpt12  23603  cnmpt2c  23606  cnmpt21  23607  cnmpt2t  23609  cnmpt22  23610  cnmpt22f  23611  cnmpt2res  23613  cnmptcom  23614  cnmpt2k  23624  ptunhmeo  23744  xpstopnlem1  23745  xkocnv  23750  xkohmeo  23751  txflf  23942  flfcnp2  23943  cnmpt2plusg  24024  tmdcn2  24025  indistgp  24036  clssubg  24045  qustgplem  24057  prdstmdd  24060  tsmsadd  24083  cnmpt2vsca  24131  txmetcn  24485  cnmpt2ds  24781  fsum2cn  24811  cnmpopc  24871  htpyco2  24927  phtpyco2  24938  cnmpt2ip  25198  limccnp2  25843  dvcnp2  25871  dvcnp2OLD  25872  dvaddbr  25890  dvmulbr  25891  dvmulbrOLD  25892  dvcobr  25899  dvcobrOLD  25900  lhop1lem  25968  taylthlem2  26332  taylthlem2OLD  26333  cxpcn3  26708  tpr2tp  33881  txsconnlem  35208  txsconn  35209  cvmlift2lem11  35281  cvmlift2lem12  35282
  Copyright terms: Public domain W3C validator