NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  resco GIF version

Theorem resco 5086
Description: Associative law for the restriction of a composition. (Contributed by set.mm contributors, 12-Dec-2006.)
Assertion
Ref Expression
resco ((A B) C) = (A (B C))

Proof of Theorem resco
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brco 4884 . . . . 5 (x(A B)yz(xBz zAy))
21anbi1i 676 . . . 4 ((x(A B)y x C) ↔ (z(xBz zAy) x C))
3 19.41v 1901 . . . 4 (z((xBz zAy) x C) ↔ (z(xBz zAy) x C))
4 an32 773 . . . . . 6 (((xBz zAy) x C) ↔ ((xBz x C) zAy))
5 brres 4950 . . . . . . 7 (x(B C)z ↔ (xBz x C))
65anbi1i 676 . . . . . 6 ((x(B C)z zAy) ↔ ((xBz x C) zAy))
74, 6bitr4i 243 . . . . 5 (((xBz zAy) x C) ↔ (x(B C)z zAy))
87exbii 1582 . . . 4 (z((xBz zAy) x C) ↔ z(x(B C)z zAy))
92, 3, 83bitr2i 264 . . 3 ((x(A B)y x C) ↔ z(x(B C)z zAy))
10 brres 4950 . . 3 (x((A B) C)y ↔ (x(A B)y x C))
11 brco 4884 . . 3 (x(A (B C))yz(x(B C)z zAy))
129, 10, 113bitr4i 268 . 2 (x((A B) C)yx(A (B C))y)
1312eqbrriv 4852 1 ((A B) C) = (A (B C))
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710   class class class wbr 4640   ccom 4722   cres 4775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-xp 4785  df-res 4789
This theorem is referenced by:  coires1  5097  fcoi1  5241
  Copyright terms: Public domain W3C validator