New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ceexlem1 | GIF version |
Description: Lemma for ceex 6174. Set up part of the stratification. (Contributed by SF, 6-Mar-2015.) |
Ref | Expression |
---|---|
ceexlem1 | ⊢ (〈{{a}}, n〉 ∈ ( S ∘ SI Pw1Fn ) ↔ ℘1a ∈ n) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4111 | . . . . . . . 8 ⊢ {a} ∈ V | |
2 | 1 | brsnsi1 5775 | . . . . . . 7 ⊢ ({{a}} SI Pw1Fn u ↔ ∃t(u = {t} ∧ {a} Pw1Fn t)) |
3 | 2 | anbi1i 676 | . . . . . 6 ⊢ (({{a}} SI Pw1Fn u ∧ u S n) ↔ (∃t(u = {t} ∧ {a} Pw1Fn t) ∧ u S n)) |
4 | 19.41v 1901 | . . . . . 6 ⊢ (∃t((u = {t} ∧ {a} Pw1Fn t) ∧ u S n) ↔ (∃t(u = {t} ∧ {a} Pw1Fn t) ∧ u S n)) | |
5 | anass 630 | . . . . . . 7 ⊢ (((u = {t} ∧ {a} Pw1Fn t) ∧ u S n) ↔ (u = {t} ∧ ({a} Pw1Fn t ∧ u S n))) | |
6 | 5 | exbii 1582 | . . . . . 6 ⊢ (∃t((u = {t} ∧ {a} Pw1Fn t) ∧ u S n) ↔ ∃t(u = {t} ∧ ({a} Pw1Fn t ∧ u S n))) |
7 | 3, 4, 6 | 3bitr2i 264 | . . . . 5 ⊢ (({{a}} SI Pw1Fn u ∧ u S n) ↔ ∃t(u = {t} ∧ ({a} Pw1Fn t ∧ u S n))) |
8 | 7 | exbii 1582 | . . . 4 ⊢ (∃u({{a}} SI Pw1Fn u ∧ u S n) ↔ ∃u∃t(u = {t} ∧ ({a} Pw1Fn t ∧ u S n))) |
9 | excom 1741 | . . . 4 ⊢ (∃u∃t(u = {t} ∧ ({a} Pw1Fn t ∧ u S n)) ↔ ∃t∃u(u = {t} ∧ ({a} Pw1Fn t ∧ u S n))) | |
10 | 8, 9 | bitri 240 | . . 3 ⊢ (∃u({{a}} SI Pw1Fn u ∧ u S n) ↔ ∃t∃u(u = {t} ∧ ({a} Pw1Fn t ∧ u S n))) |
11 | snex 4111 | . . . . . 6 ⊢ {t} ∈ V | |
12 | breq1 4642 | . . . . . . 7 ⊢ (u = {t} → (u S n ↔ {t} S n)) | |
13 | 12 | anbi2d 684 | . . . . . 6 ⊢ (u = {t} → (({a} Pw1Fn t ∧ u S n) ↔ ({a} Pw1Fn t ∧ {t} S n))) |
14 | 11, 13 | ceqsexv 2894 | . . . . 5 ⊢ (∃u(u = {t} ∧ ({a} Pw1Fn t ∧ u S n)) ↔ ({a} Pw1Fn t ∧ {t} S n)) |
15 | vex 2862 | . . . . . . 7 ⊢ a ∈ V | |
16 | 15 | brpw1fn 5854 | . . . . . 6 ⊢ ({a} Pw1Fn t ↔ t = ℘1a) |
17 | vex 2862 | . . . . . . 7 ⊢ t ∈ V | |
18 | vex 2862 | . . . . . . 7 ⊢ n ∈ V | |
19 | 17, 18 | brssetsn 4759 | . . . . . 6 ⊢ ({t} S n ↔ t ∈ n) |
20 | 16, 19 | anbi12i 678 | . . . . 5 ⊢ (({a} Pw1Fn t ∧ {t} S n) ↔ (t = ℘1a ∧ t ∈ n)) |
21 | 14, 20 | bitri 240 | . . . 4 ⊢ (∃u(u = {t} ∧ ({a} Pw1Fn t ∧ u S n)) ↔ (t = ℘1a ∧ t ∈ n)) |
22 | 21 | exbii 1582 | . . 3 ⊢ (∃t∃u(u = {t} ∧ ({a} Pw1Fn t ∧ u S n)) ↔ ∃t(t = ℘1a ∧ t ∈ n)) |
23 | 10, 22 | bitri 240 | . 2 ⊢ (∃u({{a}} SI Pw1Fn u ∧ u S n) ↔ ∃t(t = ℘1a ∧ t ∈ n)) |
24 | opelco 4884 | . 2 ⊢ (〈{{a}}, n〉 ∈ ( S ∘ SI Pw1Fn ) ↔ ∃u({{a}} SI Pw1Fn u ∧ u S n)) | |
25 | df-clel 2349 | . 2 ⊢ (℘1a ∈ n ↔ ∃t(t = ℘1a ∧ t ∈ n)) | |
26 | 23, 24, 25 | 3bitr4i 268 | 1 ⊢ (〈{{a}}, n〉 ∈ ( S ∘ SI Pw1Fn ) ↔ ℘1a ∈ n) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {csn 3737 ℘1cpw1 4135 〈cop 4561 class class class wbr 4639 S csset 4719 SI csi 4720 ∘ ccom 4721 Pw1Fn cpw1fn 5765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-fv 4795 df-mpt 5652 df-pw1fn 5766 |
This theorem is referenced by: ceex 6174 |
Copyright terms: Public domain | W3C validator |