MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discr Structured version   Visualization version   GIF version

Theorem discr 13041
Description: If a quadratic polynomial with real coefficients is nonnegative for all values, then its discriminant is nonpositive. (Contributed by NM, 10-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
discr.1 (𝜑𝐴 ∈ ℝ)
discr.2 (𝜑𝐵 ∈ ℝ)
discr.3 (𝜑𝐶 ∈ ℝ)
discr.4 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
Assertion
Ref Expression
discr (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem discr
StepHypRef Expression
1 discr.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
21adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
3 resqcl 12971 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ)
42, 3syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (𝐵↑2) ∈ ℝ)
54recnd 10106 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (𝐵↑2) ∈ ℂ)
6 4re 11135 . . . . . . . . 9 4 ∈ ℝ
7 discr.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
87adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
9 discr.3 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
109adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 𝐶 ∈ ℝ)
118, 10remulcld 10108 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · 𝐶) ∈ ℝ)
12 remulcl 10059 . . . . . . . . 9 ((4 ∈ ℝ ∧ (𝐴 · 𝐶) ∈ ℝ) → (4 · (𝐴 · 𝐶)) ∈ ℝ)
136, 11, 12sylancr 696 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (4 · (𝐴 · 𝐶)) ∈ ℝ)
1413recnd 10106 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (4 · (𝐴 · 𝐶)) ∈ ℂ)
15 4pos 11154 . . . . . . . . . 10 0 < 4
166, 15elrpii 11873 . . . . . . . . 9 4 ∈ ℝ+
17 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴)
188, 17elrpd 11907 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
19 rpmulcl 11893 . . . . . . . . 9 ((4 ∈ ℝ+𝐴 ∈ ℝ+) → (4 · 𝐴) ∈ ℝ+)
2016, 18, 19sylancr 696 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (4 · 𝐴) ∈ ℝ+)
2120rpcnd 11912 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (4 · 𝐴) ∈ ℂ)
2220rpne0d 11915 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (4 · 𝐴) ≠ 0)
235, 14, 21, 22divsubdird 10878 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) − (4 · (𝐴 · 𝐶))) / (4 · 𝐴)) = (((𝐵↑2) / (4 · 𝐴)) − ((4 · (𝐴 · 𝐶)) / (4 · 𝐴))))
2411recnd 10106 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · 𝐶) ∈ ℂ)
258recnd 10106 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
26 4cn 11136 . . . . . . . . . 10 4 ∈ ℂ
2726a1i 11 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 4 ∈ ℂ)
2818rpne0d 11915 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0)
29 4ne0 11155 . . . . . . . . . 10 4 ≠ 0
3029a1i 11 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 4 ≠ 0)
3124, 25, 27, 28, 30divcan5d 10865 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((4 · (𝐴 · 𝐶)) / (4 · 𝐴)) = ((𝐴 · 𝐶) / 𝐴))
3210recnd 10106 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 𝐶 ∈ ℂ)
3332, 25, 28divcan3d 10844 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · 𝐶) / 𝐴) = 𝐶)
3431, 33eqtrd 2685 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ((4 · (𝐴 · 𝐶)) / (4 · 𝐴)) = 𝐶)
3534oveq2d 6706 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) − ((4 · (𝐴 · 𝐶)) / (4 · 𝐴))) = (((𝐵↑2) / (4 · 𝐴)) − 𝐶))
3623, 35eqtrd 2685 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) − (4 · (𝐴 · 𝐶))) / (4 · 𝐴)) = (((𝐵↑2) / (4 · 𝐴)) − 𝐶))
374, 20rerpdivcld 11941 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (4 · 𝐴)) ∈ ℝ)
3837recnd 10106 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (4 · 𝐴)) ∈ ℂ)
39382timesd 11313 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (2 · ((𝐵↑2) / (4 · 𝐴))) = (((𝐵↑2) / (4 · 𝐴)) + ((𝐵↑2) / (4 · 𝐴))))
40 2t2e4 11215 . . . . . . . . . . . . 13 (2 · 2) = 4
4140oveq1i 6700 . . . . . . . . . . . 12 ((2 · 2) · 𝐴) = (4 · 𝐴)
42 2cnd 11131 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < 𝐴) → 2 ∈ ℂ)
4342, 42, 25mulassd 10101 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝐴) → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
4441, 43syl5eqr 2699 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → (4 · 𝐴) = (2 · (2 · 𝐴)))
4544oveq2d 6706 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((2 · (𝐵↑2)) / (4 · 𝐴)) = ((2 · (𝐵↑2)) / (2 · (2 · 𝐴))))
4642, 5, 21, 22divassd 10874 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((2 · (𝐵↑2)) / (4 · 𝐴)) = (2 · ((𝐵↑2) / (4 · 𝐴))))
47 2rp 11875 . . . . . . . . . . . . 13 2 ∈ ℝ+
48 rpmulcl 11893 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝐴 ∈ ℝ+) → (2 · 𝐴) ∈ ℝ+)
4947, 18, 48sylancr 696 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝐴) → (2 · 𝐴) ∈ ℝ+)
5049rpcnd 11912 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → (2 · 𝐴) ∈ ℂ)
5149rpne0d 11915 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → (2 · 𝐴) ≠ 0)
52 2ne0 11151 . . . . . . . . . . . 12 2 ≠ 0
5352a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 2 ≠ 0)
545, 50, 42, 51, 53divcan5d 10865 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((2 · (𝐵↑2)) / (2 · (2 · 𝐴))) = ((𝐵↑2) / (2 · 𝐴)))
5545, 46, 543eqtr3d 2693 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (2 · ((𝐵↑2) / (4 · 𝐴))) = ((𝐵↑2) / (2 · 𝐴)))
5639, 55eqtr3d 2687 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) + ((𝐵↑2) / (4 · 𝐴))) = ((𝐵↑2) / (2 · 𝐴)))
572, 49rerpdivcld 11941 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝐴) → (𝐵 / (2 · 𝐴)) ∈ ℝ)
5857renegcld 10495 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → -(𝐵 / (2 · 𝐴)) ∈ ℝ)
59 discr.4 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
6059ralrimiva 2995 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
6160adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
62 oveq1 6697 . . . . . . . . . . . . . . . 16 (𝑥 = -(𝐵 / (2 · 𝐴)) → (𝑥↑2) = (-(𝐵 / (2 · 𝐴))↑2))
6362oveq2d 6706 . . . . . . . . . . . . . . 15 (𝑥 = -(𝐵 / (2 · 𝐴)) → (𝐴 · (𝑥↑2)) = (𝐴 · (-(𝐵 / (2 · 𝐴))↑2)))
64 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑥 = -(𝐵 / (2 · 𝐴)) → (𝐵 · 𝑥) = (𝐵 · -(𝐵 / (2 · 𝐴))))
6563, 64oveq12d 6708 . . . . . . . . . . . . . 14 (𝑥 = -(𝐵 / (2 · 𝐴)) → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))))
6665oveq1d 6705 . . . . . . . . . . . . 13 (𝑥 = -(𝐵 / (2 · 𝐴)) → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶))
6766breq2d 4697 . . . . . . . . . . . 12 (𝑥 = -(𝐵 / (2 · 𝐴)) → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶)))
6867rspcv 3336 . . . . . . . . . . 11 (-(𝐵 / (2 · 𝐴)) ∈ ℝ → (∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) → 0 ≤ (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶)))
6958, 61, 68sylc 65 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 0 ≤ (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶))
7057recnd 10106 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ 0 < 𝐴) → (𝐵 / (2 · 𝐴)) ∈ ℂ)
71 sqneg 12963 . . . . . . . . . . . . . . . . . . 19 ((𝐵 / (2 · 𝐴)) ∈ ℂ → (-(𝐵 / (2 · 𝐴))↑2) = ((𝐵 / (2 · 𝐴))↑2))
7270, 71syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 < 𝐴) → (-(𝐵 / (2 · 𝐴))↑2) = ((𝐵 / (2 · 𝐴))↑2))
732recnd 10106 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℂ)
74 sqdiv 12968 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℂ ∧ (2 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ≠ 0) → ((𝐵 / (2 · 𝐴))↑2) = ((𝐵↑2) / ((2 · 𝐴)↑2)))
7573, 50, 51, 74syl3anc 1366 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 < 𝐴) → ((𝐵 / (2 · 𝐴))↑2) = ((𝐵↑2) / ((2 · 𝐴)↑2)))
76 sqval 12962 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴)↑2) = ((2 · 𝐴) · (2 · 𝐴)))
7750, 76syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ 0 < 𝐴) → ((2 · 𝐴)↑2) = ((2 · 𝐴) · (2 · 𝐴)))
7850, 42, 25mulassd 10101 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ 0 < 𝐴) → (((2 · 𝐴) · 2) · 𝐴) = ((2 · 𝐴) · (2 · 𝐴)))
7942, 25, 42mul32d 10284 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ 0 < 𝐴) → ((2 · 𝐴) · 2) = ((2 · 2) · 𝐴))
8079, 41syl6eq 2701 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ 0 < 𝐴) → ((2 · 𝐴) · 2) = (4 · 𝐴))
8180oveq1d 6705 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ 0 < 𝐴) → (((2 · 𝐴) · 2) · 𝐴) = ((4 · 𝐴) · 𝐴))
8277, 78, 813eqtr2d 2691 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ 0 < 𝐴) → ((2 · 𝐴)↑2) = ((4 · 𝐴) · 𝐴))
8382oveq2d 6706 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / ((2 · 𝐴)↑2)) = ((𝐵↑2) / ((4 · 𝐴) · 𝐴)))
8472, 75, 833eqtrd 2689 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ 0 < 𝐴) → (-(𝐵 / (2 · 𝐴))↑2) = ((𝐵↑2) / ((4 · 𝐴) · 𝐴)))
855, 21, 25, 22, 28divdiv1d 10870 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) / 𝐴) = ((𝐵↑2) / ((4 · 𝐴) · 𝐴)))
8684, 85eqtr4d 2688 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 < 𝐴) → (-(𝐵 / (2 · 𝐴))↑2) = (((𝐵↑2) / (4 · 𝐴)) / 𝐴))
8786oveq2d 6706 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) = (𝐴 · (((𝐵↑2) / (4 · 𝐴)) / 𝐴)))
8838, 25, 28divcan2d 10841 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (((𝐵↑2) / (4 · 𝐴)) / 𝐴)) = ((𝐵↑2) / (4 · 𝐴)))
8987, 88eqtrd 2685 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) = ((𝐵↑2) / (4 · 𝐴)))
9073, 70mulneg2d 10522 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < 𝐴) → (𝐵 · -(𝐵 / (2 · 𝐴))) = -(𝐵 · (𝐵 / (2 · 𝐴))))
91 sqval 12962 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵))
9273, 91syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 < 𝐴) → (𝐵↑2) = (𝐵 · 𝐵))
9392oveq1d 6705 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (2 · 𝐴)) = ((𝐵 · 𝐵) / (2 · 𝐴)))
9473, 73, 50, 51divassd 10874 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ 0 < 𝐴) → ((𝐵 · 𝐵) / (2 · 𝐴)) = (𝐵 · (𝐵 / (2 · 𝐴))))
9593, 94eqtrd 2685 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (2 · 𝐴)) = (𝐵 · (𝐵 / (2 · 𝐴))))
9695negeqd 10313 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < 𝐴) → -((𝐵↑2) / (2 · 𝐴)) = -(𝐵 · (𝐵 / (2 · 𝐴))))
9790, 96eqtr4d 2688 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < 𝐴) → (𝐵 · -(𝐵 / (2 · 𝐴))) = -((𝐵↑2) / (2 · 𝐴)))
9889, 97oveq12d 6708 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) = (((𝐵↑2) / (4 · 𝐴)) + -((𝐵↑2) / (2 · 𝐴))))
994, 49rerpdivcld 11941 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (2 · 𝐴)) ∈ ℝ)
10099recnd 10106 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (2 · 𝐴)) ∈ ℂ)
10138, 100negsubd 10436 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) + -((𝐵↑2) / (2 · 𝐴))) = (((𝐵↑2) / (4 · 𝐴)) − ((𝐵↑2) / (2 · 𝐴))))
10298, 101eqtrd 2685 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) = (((𝐵↑2) / (4 · 𝐴)) − ((𝐵↑2) / (2 · 𝐴))))
103102oveq1d 6705 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶) = ((((𝐵↑2) / (4 · 𝐴)) − ((𝐵↑2) / (2 · 𝐴))) + 𝐶))
10438, 32, 100addsubd 10451 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → ((((𝐵↑2) / (4 · 𝐴)) + 𝐶) − ((𝐵↑2) / (2 · 𝐴))) = ((((𝐵↑2) / (4 · 𝐴)) − ((𝐵↑2) / (2 · 𝐴))) + 𝐶))
105103, 104eqtr4d 2688 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶) = ((((𝐵↑2) / (4 · 𝐴)) + 𝐶) − ((𝐵↑2) / (2 · 𝐴))))
10669, 105breqtrd 4711 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 ≤ ((((𝐵↑2) / (4 · 𝐴)) + 𝐶) − ((𝐵↑2) / (2 · 𝐴))))
10737, 10readdcld 10107 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) + 𝐶) ∈ ℝ)
108107, 99subge0d 10655 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (0 ≤ ((((𝐵↑2) / (4 · 𝐴)) + 𝐶) − ((𝐵↑2) / (2 · 𝐴))) ↔ ((𝐵↑2) / (2 · 𝐴)) ≤ (((𝐵↑2) / (4 · 𝐴)) + 𝐶)))
109106, 108mpbid 222 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (2 · 𝐴)) ≤ (((𝐵↑2) / (4 · 𝐴)) + 𝐶))
11056, 109eqbrtrd 4707 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) + ((𝐵↑2) / (4 · 𝐴))) ≤ (((𝐵↑2) / (4 · 𝐴)) + 𝐶))
11137, 10, 37leadd2d 10660 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) ≤ 𝐶 ↔ (((𝐵↑2) / (4 · 𝐴)) + ((𝐵↑2) / (4 · 𝐴))) ≤ (((𝐵↑2) / (4 · 𝐴)) + 𝐶)))
112110, 111mpbird 247 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (4 · 𝐴)) ≤ 𝐶)
11337, 10suble0d 10656 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → ((((𝐵↑2) / (4 · 𝐴)) − 𝐶) ≤ 0 ↔ ((𝐵↑2) / (4 · 𝐴)) ≤ 𝐶))
114112, 113mpbird 247 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) − 𝐶) ≤ 0)
11536, 114eqbrtrd 4707 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) − (4 · (𝐴 · 𝐶))) / (4 · 𝐴)) ≤ 0)
1164, 13resubcld 10496 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℝ)
117 0red 10079 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 0 ∈ ℝ)
118116, 117, 20ledivmuld 11963 . . . 4 ((𝜑 ∧ 0 < 𝐴) → ((((𝐵↑2) − (4 · (𝐴 · 𝐶))) / (4 · 𝐴)) ≤ 0 ↔ ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ ((4 · 𝐴) · 0)))
119115, 118mpbid 222 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ ((4 · 𝐴) · 0))
12021mul01d 10273 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((4 · 𝐴) · 0) = 0)
121119, 120breqtrd 4711 . 2 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
1229adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 𝐶 ∈ ℝ)
123122ltp1d 10992 . . . . . . . . . . 11 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 𝐶 < (𝐶 + 1))
124 peano2re 10247 . . . . . . . . . . . . 13 (𝐶 ∈ ℝ → (𝐶 + 1) ∈ ℝ)
125122, 124syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (𝐶 + 1) ∈ ℝ)
126122, 125ltnegd 10643 . . . . . . . . . . 11 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (𝐶 < (𝐶 + 1) ↔ -(𝐶 + 1) < -𝐶))
127123, 126mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → -(𝐶 + 1) < -𝐶)
128 df-neg 10307 . . . . . . . . . 10 -𝐶 = (0 − 𝐶)
129127, 128syl6breq 4726 . . . . . . . . 9 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → -(𝐶 + 1) < (0 − 𝐶))
130125renegcld 10495 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → -(𝐶 + 1) ∈ ℝ)
131 0red 10079 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 0 ∈ ℝ)
132130, 122, 131ltaddsubd 10665 . . . . . . . . 9 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ((-(𝐶 + 1) + 𝐶) < 0 ↔ -(𝐶 + 1) < (0 − 𝐶)))
133129, 132mpbird 247 . . . . . . . 8 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (-(𝐶 + 1) + 𝐶) < 0)
134133expr 642 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → (𝐵 ≠ 0 → (-(𝐶 + 1) + 𝐶) < 0))
1351adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
136 simprr 811 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 𝐵 ≠ 0)
137130, 135, 136redivcld 10891 . . . . . . . . . . 11 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (-(𝐶 + 1) / 𝐵) ∈ ℝ)
13860adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
139 oveq1 6697 . . . . . . . . . . . . . . . 16 (𝑥 = (-(𝐶 + 1) / 𝐵) → (𝑥↑2) = ((-(𝐶 + 1) / 𝐵)↑2))
140139oveq2d 6706 . . . . . . . . . . . . . . 15 (𝑥 = (-(𝐶 + 1) / 𝐵) → (𝐴 · (𝑥↑2)) = (𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)))
141 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑥 = (-(𝐶 + 1) / 𝐵) → (𝐵 · 𝑥) = (𝐵 · (-(𝐶 + 1) / 𝐵)))
142140, 141oveq12d 6708 . . . . . . . . . . . . . 14 (𝑥 = (-(𝐶 + 1) / 𝐵) → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))))
143142oveq1d 6705 . . . . . . . . . . . . 13 (𝑥 = (-(𝐶 + 1) / 𝐵) → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) + 𝐶))
144143breq2d 4697 . . . . . . . . . . . 12 (𝑥 = (-(𝐶 + 1) / 𝐵) → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) + 𝐶)))
145144rspcv 3336 . . . . . . . . . . 11 ((-(𝐶 + 1) / 𝐵) ∈ ℝ → (∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) → 0 ≤ (((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) + 𝐶)))
146137, 138, 145sylc 65 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 0 ≤ (((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) + 𝐶))
147 simprl 809 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 0 = 𝐴)
148147oveq1d 6705 . . . . . . . . . . . . . 14 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (0 · ((-(𝐶 + 1) / 𝐵)↑2)) = (𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)))
149137recnd 10106 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (-(𝐶 + 1) / 𝐵) ∈ ℂ)
150 sqcl 12965 . . . . . . . . . . . . . . . 16 ((-(𝐶 + 1) / 𝐵) ∈ ℂ → ((-(𝐶 + 1) / 𝐵)↑2) ∈ ℂ)
151149, 150syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ((-(𝐶 + 1) / 𝐵)↑2) ∈ ℂ)
152151mul02d 10272 . . . . . . . . . . . . . 14 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (0 · ((-(𝐶 + 1) / 𝐵)↑2)) = 0)
153148, 152eqtr3d 2687 . . . . . . . . . . . . 13 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) = 0)
154130recnd 10106 . . . . . . . . . . . . . 14 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → -(𝐶 + 1) ∈ ℂ)
155135recnd 10106 . . . . . . . . . . . . . 14 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
156154, 155, 136divcan2d 10841 . . . . . . . . . . . . 13 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (𝐵 · (-(𝐶 + 1) / 𝐵)) = -(𝐶 + 1))
157153, 156oveq12d 6708 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) = (0 + -(𝐶 + 1)))
158154addid2d 10275 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (0 + -(𝐶 + 1)) = -(𝐶 + 1))
159157, 158eqtrd 2685 . . . . . . . . . . 11 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) = -(𝐶 + 1))
160159oveq1d 6705 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) + 𝐶) = (-(𝐶 + 1) + 𝐶))
161146, 160breqtrd 4711 . . . . . . . . 9 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 0 ≤ (-(𝐶 + 1) + 𝐶))
162 0re 10078 . . . . . . . . . 10 0 ∈ ℝ
163130, 122readdcld 10107 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (-(𝐶 + 1) + 𝐶) ∈ ℝ)
164 lenlt 10154 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (-(𝐶 + 1) + 𝐶) ∈ ℝ) → (0 ≤ (-(𝐶 + 1) + 𝐶) ↔ ¬ (-(𝐶 + 1) + 𝐶) < 0))
165162, 163, 164sylancr 696 . . . . . . . . 9 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (0 ≤ (-(𝐶 + 1) + 𝐶) ↔ ¬ (-(𝐶 + 1) + 𝐶) < 0))
166161, 165mpbid 222 . . . . . . . 8 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ¬ (-(𝐶 + 1) + 𝐶) < 0)
167166expr 642 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → (𝐵 ≠ 0 → ¬ (-(𝐶 + 1) + 𝐶) < 0))
168134, 167pm2.65d 187 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → ¬ 𝐵 ≠ 0)
169 nne 2827 . . . . . 6 𝐵 ≠ 0 ↔ 𝐵 = 0)
170168, 169sylib 208 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → 𝐵 = 0)
171170sq0id 12997 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (𝐵↑2) = 0)
172 simpr 476 . . . . . . . 8 ((𝜑 ∧ 0 = 𝐴) → 0 = 𝐴)
173172oveq1d 6705 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → (0 · 𝐶) = (𝐴 · 𝐶))
1749recnd 10106 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
175174adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 = 𝐴) → 𝐶 ∈ ℂ)
176175mul02d 10272 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → (0 · 𝐶) = 0)
177173, 176eqtr3d 2687 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → (𝐴 · 𝐶) = 0)
178177oveq2d 6706 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → (4 · (𝐴 · 𝐶)) = (4 · 0))
17926mul01i 10264 . . . . 5 (4 · 0) = 0
180178, 179syl6eq 2701 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (4 · (𝐴 · 𝐶)) = 0)
181171, 180oveq12d 6708 . . 3 ((𝜑 ∧ 0 = 𝐴) → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) = (0 − 0))
182 0m0e0 11168 . . . 4 (0 − 0) = 0
183 0le0 11148 . . . 4 0 ≤ 0
184182, 183eqbrtri 4706 . . 3 (0 − 0) ≤ 0
185181, 184syl6eqbr 4724 . 2 ((𝜑 ∧ 0 = 𝐴) → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
186 eqid 2651 . . . 4 if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
1877, 1, 9, 59, 186discr1 13040 . . 3 (𝜑 → 0 ≤ 𝐴)
188 leloe 10162 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
189162, 7, 188sylancr 696 . . 3 (𝜑 → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
190187, 189mpbid 222 . 2 (𝜑 → (0 < 𝐴 ∨ 0 = 𝐴))
191121, 185, 190mpjaodan 844 1 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  ifcif 4119   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  2c2 11108  4c4 11110  +crp 11870  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901
This theorem is referenced by:  csbren  23228  normlem6  28100
  Copyright terms: Public domain W3C validator